1887

Abstract

Foamy viruses (FVs) make use of a replication strategy which is unique among retroviruses and shows analogies to hepadnaviruses. The presence of an integrase (IN) and obligate provirus integration distinguish retroviruses from hepadnaviruses. To clarify whether a functional IN is required for FV replication, a mutant in the highly conserved DD35E motif of the active centre was analysed. This mutant was found to be able to express Gag and Pol protein precursors and cleavage products and to generate and deliver cDNA. However, this mutant was replication-deficient. The junctions of individual foamy proviruses with cellular DNA were sequenced. The findings suggest that FV integration is asymmetrical, because the proviruses started with what is believed to be the U3 end of the free linear DNA to generate the conventional TG dinucleotide, while apparently two nucleotides from the U5 end were cleaved to create the complementary CA dinucleotide. Alignment of known FV genome sequences indicated that this mechanism of integration is not restricted to the two FV isolates from which integrates were studied, but appears to be a common feature of this retrovirus subfamily. In conclusion, with respect to the necessity of a functionally active IN for virus replication FVs behave like other retroviruses; their mechanism of integration, however, is probably unique.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-6-1445
1999-06-01
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/6/0801445a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-6-1445&mimeType=html&fmt=ahah

References

  1. Achong B. G., Mansell P. W. A., Epstein M. A., Clifford P. 1971; An unusual virus in cultures from a human nasopharyngeal carcinoma. Journal of the National Cancer Institute 46:299–307
    [Google Scholar]
  2. Ali M., Taylor G. P., Pitman R. J., Parker D., Rethwilm A., Cheingsong-Popov R., Weber J. N., Bieniasz P. D., Bradley J., McClure M. O. 1996; No evidence of antibody to human foamy virus in widespread human populations. AIDS Research & Human Retroviruses 12:1473–1483
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols in Molecular Biology New York: John Wiley;
    [Google Scholar]
  4. Baldwin D. N., Linial M. L. 1998; The roles of pol and env in the assembly pathway of human foamy virus. Journal of Virology 72:3658–3665
    [Google Scholar]
  5. Baunach G., Maurer B., Hahn H., Kranz M., Rethwilm A. 1993; Functional analysis of human foamy virus accessory reading frames. Journal of Virology 67:5411–5418
    [Google Scholar]
  6. Bieniasz P. D., Erlwein O., Aguzzi A., Rethwilm A., McClure M. O. 1997; Gene transfer using replication-defective human foamy virus vectors. Virology 235:65–72
    [Google Scholar]
  7. Brown P. O. 1997; Integration. In Retroviruses. pp 161–203 Edited by Coffin M. J., Hughes S. H., Varmus H. E. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  8. Coffin J. M. 1996; Retroviridae: the viruses and their replication. In Virology 3rd edn, pp 1767–1847 Edited by Fields N. B. Knipe D. M. Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  9. DuBridge R. B., Tang P., Hsia H. C., Leong P.-M., Miller J. H., Calos M. P. 1987; Analysis of mutation in human cells by using Epstein-Barr virus shuttle system. Molecular and Cellular Biology 7:379–387
    [Google Scholar]
  10. Engelman A., Craigie R. 1992; Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. Journal of Virology 66:6361–6369
    [Google Scholar]
  11. Enssle J., Fischer N., Moebes A., Mauer B., Smola U., Rethwilm A. 1997; Carboxy -terminal cleavage of the human foamy virus gag precursor molecule is an essential step in the viral life cycle. Journal of Virology 71:7312–7317
    [Google Scholar]
  12. Fischer N., Heinkelein M., Lindemann D., Enssle J., Baum C., Werder E., Zentgraf H., Muller J. G., Rethwilm A. 1998; Foamy virus particle formation. Journal of Virology 72:1610–1615
    [Google Scholar]
  13. Flügel R. M., Rethwilm A., Maurer B., Darai G. 1987; Nucleotide sequence analysis of the env gene and its flanking regions of the human spumaretrovirus reveals two novel genes. EMBO Journal 6:2077–2084
    [Google Scholar]
  14. Gaur M., Leavitt A. D. 1998; Mutations in the human immunodeficiency virus type 1 integrase D, D(35)E motif do not eliminate provirus formation. Journal of Virology 72:4678–4685
    [Google Scholar]
  15. Goff S. P. 1992; Genetics of retroviral integration. Annual Review in Genetics 26:527–544
    [Google Scholar]
  16. Hagino-Yamagashi K., Donehower L. A., Varmus H. E. 1987; Retroviral DNA integrated during infection by an integration-deficient mutant of murine leukemia virus is oligomeric. Journal of Virology 61:1964–1971
    [Google Scholar]
  17. Hahn H., Baunach G., Brautigam S., Mergia A., Neumann-Haefelin D., Daniel M. D., McClure M. O., Rethwilm A. 1994; Reactivity of primate sera to foamy virus Gag and Bet proteins. Journal of General Virology 75:2635–2644
    [Google Scholar]
  18. Heinkelein M., Schmidt M., Fischer N., Moebes A., Lindemann D., Enssle J., Rethwilm A. 1998; Characterization of a cis-acting sequence in the pol region required to transfer human foamy virus vectors. Journal of Virology 72:6307–6314
    [Google Scholar]
  19. Helps C. R., Harbour D. A. 1997; Comparison of the complete sequence of feline spumavirus with those of the primate spumaviruses reveals a shorter gag gene. Journal of General Virology 78:2549–2564
    [Google Scholar]
  20. Herchenroder O., Renne R., Loncar D., Cobb E. K., Murthy K. K., Schneider J., Mergia A., Luciw P. A. 1994; Isolation, cloning, and sequencing of simian foamy viruses from chimpanzees (SFVcpz): high homology to human foamy virus (HFV). Virology 201:187–199
    [Google Scholar]
  21. Herchenröder O., Turek R., Neumann-Haefelin D., Rethwilm A., Schneider J. 1996; Infectious proviral molecular clones of foamy virus from chimpanzee (SFVcpz) generated by ‘long PCR’ provide evidence for functional relationship with human foamy virus (HFV). Virology 214:685–689
    [Google Scholar]
  22. Higuchi R. 1990; Recombinant PCR. In PCR Protocols. A Guide to Methods and Applications Edited by Innis M. A., Gelfand D. H., White T. J. San Diego, CA: Academic Press;
    [Google Scholar]
  23. Hirt B. 1967; Selective extraction of polyoma DNA from infected mouse cell cultures. Journal of Molecular Biology 26:365–369
    [Google Scholar]
  24. Kitamura Y., Lee Y. M. H., Coffin J. M. 1992; Nonrandom integration of retroviral DNA in vitro: effect of CpG methylation. Proceedings of the National Academy of Sciences, USA 89:5532–5536
    [Google Scholar]
  25. Kögel D., Aboud M., Flugel R. M. 1995; Molecular biological characterization of the human foamy virus reverse transcriptase and ribonuclease H domains. Virology 213:97–108
    [Google Scholar]
  26. Konvalinka J., Löchelt M., Zentgraf H., Flügel R. M., Krausslich H.-G. 1995; Active foamy virus proteinase is essential for virus infectivity but not for formation of a pol polyprotein. Journal of Virology 69:7264–7268
    [Google Scholar]
  27. Kupiec J. J., Kay A., Hayat M., Ravier R., Peries J., Galibert F. 1991; Sequence analysis of the simian foamy virus type 1 genome. Gene 101:185–194
    [Google Scholar]
  28. Lindemann D., Rethwilm A. 1998; Characterization of a human foamy virus 170 kD env-bet fusion protein generated by alternative splicing. Journal of Virology 72:4088–4094
    [Google Scholar]
  29. Lindemann D., Bock M., Schweizer M., Rethwilm A. 1997; Efficient pseudotyping of murine leukemia virus particles with chimeric human foamy virus envelope proteins. Journal of Virology 71:4815–4820
    [Google Scholar]
  30. Linial M. L. 1999; Foamy viruses are nonconventional retroviruses. Journal of Virology 73: (in press)
    [Google Scholar]
  31. List J., Haase A. T. 1997; Integration of visna virus DNA occurs and may be necessary for productive infection. Virology 237:189–197
    [Google Scholar]
  32. Liu H., Wu X., Xiao H., Conway J. A., Kappes J. C. 1997; Incorporation of functional human immunodeficiency virus type 1 integrase into virions independent of the gag–pol precursor protein. Journal of Virology 71:7704–7710
    [Google Scholar]
  33. Löchelt M., Zentgraf H., Flugel R. M. 1991; Construction of an infectious DNA clone of the full-length human spumaretrovirus genome and mutagenesis of the bel 1 gene. Virology 184:43–54
    [Google Scholar]
  34. Masuda T., Planelles V., Krogstad P., Chen I. S. Y. 1995; Genetic analysis of human immunodeficiency virus type 1 integrase and the U3 att site: unusual phenotype of mutants in the zinc finger-like domain. Journal of Virology 69:6687–6696
    [Google Scholar]
  35. Maurer B., Bannert H., Darai G., Flugel R. M. 1988; Analysis of the primary structure of the long terminal repeat and the gag and pol genes of the human spumaretrovirus. Journal of Virology 62:1590–1597
    [Google Scholar]
  36. Mergia A., Wu M. 1998; Characterization of provirus clones of simian foamy virus type 1. Journal of Virology 72:817–822
    [Google Scholar]
  37. Miller M. D., Farnet C. M., Bushman F. D. 1997; Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. Journal of Virology 71:5382–5390
    [Google Scholar]
  38. Moebes A., Enssle J., Bieniasz P. D., Heinkelein M., Lindemann D., Bock M., McClure M. O., Rethwilm A. 1997; Human foamy virus reverse transcription that occurs late in the viral replication cycle. Journal of Virology 71:7305–7311
    [Google Scholar]
  39. Mules E. H., Uzun O., Gabriel A. 1998; In vivo Ty1 reverse transcription can generate replication intermediates with untidy ends. Journal of Virology 2:6490–6503
    [Google Scholar]
  40. Namba M., Nishitani K., Hyodoh F., Fukushima F., Kimoto T. 1985; Neoplastic transformation of human diploid fibroblasts (KMST-6) by treatment with 60Co gamma rays. International Journal of Cancer 35:275–280
    [Google Scholar]
  41. Neves M., Périés J., Saib A. 1998; Study of human foamy virus proviral integration in chronically infected murine cells. Research in Virology 149:393–401
    [Google Scholar]
  42. Pahl A., Flügel R. M. 1993; Endonucleolytic cleavages and DNA-joining activities of the integration protein of human foamy virus. Journal of Virology 67:5426–5434
    [Google Scholar]
  43. Pahl A., Flügel R. M. 1995; Characterization of the human spuma retrovirus integrase by site-directed mutagenesis, by complementation analysis, and by swapping the zinc finger domain of HIV-1. Journal of Biological Chemistry 270:2957–2966
    [Google Scholar]
  44. Panganiban A. T., Temin H. M. 1984; The retrovirus pol gene encodes a product required for DNA integration: identification of a retrovirus int locus. Proceedings of the National Academy of Sciences, USA 81:7885–7889
    [Google Scholar]
  45. Pietschmann T., Heinkelein M., Zentgraf H., Rethwilm A., Lindemann D. 1999; Foamy virus capsids require the cognate envelope protein for particle export. Journal of Virology 73:2613–2621
    [Google Scholar]
  46. Renne R., Friedl E., Schweizer M., Fleps U., Turek R., Neumann-Haefelin D. 1992; Genomic organisation and expression of simian foamy virus type 3 (SFV-3). Virology 18:597–608
    [Google Scholar]
  47. Renshaw R. W., Casey J. W. 1994a; Analysis of the 5′ long terminal repeat of bovine syncytial virus. Gene 141:221–224
    [Google Scholar]
  48. Renshaw R. W., Casey J. W. 1994b; Transcriptional mapping of the 3′ end of the bovine syncytial virus genome. Journal of Virology 68:1021–1028
    [Google Scholar]
  49. Renshaw W. R., Gonda M. A., Casey J. W. 1991; Structure and transcriptional status of bovine syncytial virus in cytopathic infections. Gene 105:179–184
    [Google Scholar]
  50. Rethwilm A. 1995; Regulation offoamy virus gene expression. Current Topics in Microbiology and Immunology 193:1–23
    [Google Scholar]
  51. Rethwilm A. 1996; Unexpected replication pathways offoamy viruses. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology 13: (Suppl.1) S248–S253
    [Google Scholar]
  52. Rethwilm A., Darai G., Rosen A., Flügel R. M. 1987; Molecular cloning of the genome of human spumaretrovirus. Gene 59:19–28
    [Google Scholar]
  53. Rethwilm A., Baunach G., Netzer K. O., Maurer B., Borisch B., Meulen V. T. 1990; Infectious DNA of the human spumaretrovirus. Nucleic Acids Research 18:733–738
    [Google Scholar]
  54. Russel D. W., Miller A. D. 1996; Foamy virus vectors. Journal of Virology 70:217–222
    [Google Scholar]
  55. Schmidt M., Rethwilm A. 1995; Replicating foamy virus-based vectors directing high level expression of foreign genes. Virology 210:167–178
    [Google Scholar]
  56. Schmidt M., Herchenroder O., Heeney J., Rethwilm A. 1997a; Long terminal repeat U3 length polymorphism of human foamy virus. Virology 230:167–178
    [Google Scholar]
  57. Schmidt M., Niewiesk S., Heeney J., Aguzzi A., Rethwilm A. 1997b; Mouse model to study the replication of primate foamy viruses. Journal of General Virology 78:1929–1933
    [Google Scholar]
  58. Schwartzberg P., Colicelli J., Goff S. P. 1984; Construction and analysis of deletion mutations in the pol gene of Moloney murine leukemia virus: a new viral function required for productive infection. Cell 37:1043–1052
    [Google Scholar]
  59. Schweizer M., Fleps U., Jackle A., Renne R., Turek R., Neumann-Haefelin D. 1993; Simian foamy virus type 3 (SFV-3) in latently infected Vero cells: reactivation by demethylation of proviral DNA. Virology 192:663–666
    [Google Scholar]
  60. Schweizer M., Turek R., Hahn H., Schliephake A., Netzer K. O., Eder G., Reinhardt M., Rethwilm A., Neumann-Haefelin D. 1995; Markers of foamy virus (FV) infections in monkeys, apes, and accidentally infected humans: appropriate testing fails to confirm suspected FV prevalence in man. AIDS Research and Human Retroviruses 11:161–170
    [Google Scholar]
  61. Silver J., Keerikatte V. 1989; Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus. Journal of Virology 63:1924–1928
    [Google Scholar]
  62. Sonigo P., Alizon M., Staskus K., Klatzmann D., Cole S., Danos O., Retzel E., Tiollais P., Haase A., Wain-Hobson S. 1985; Nucleotide sequence of the visna lentivirus: relationship to the AIDS virus. Cell 42:369–382
    [Google Scholar]
  63. Taddeo B., Haseltine W. A., Farnet C. M. 1994; Integrase mutants of human immunodeficiency virus type 1 with a specific defect in integration. Journal of Virology 68:8401–8405
    [Google Scholar]
  64. Taddeo B., Carlini F., Verani P., Engelman A. 1996; Reversion of a human immunodeficiency virus type 1 integrase mutant at a second site restores enzyme function and virus infectivity. Journal of Virology 70:8277–8284
    [Google Scholar]
  65. Tobaly-Tapiero J., Celis-Kosmas J. D., Bittoun P., Lasneret J., Poorters A. M., Eladari M. E., Emanoil-Ravier R. 1996; Isolation and characterization of infectious full-length DNA clones of chimpanzee foamy viruses SFV6 and SFV7: evidence for a taf-dependent internal promoter. Research in Virology 147:17–27
    [Google Scholar]
  66. Triglia T., Peterson M. G., Kemp D. J. 1988; A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Research 16:8186
    [Google Scholar]
  67. Weiss R. A. 1996; Foamy viruses bubble on. Nature 380:201
    [Google Scholar]
  68. Whitcomb J. M., Kumar R., Hughes S. H. 1990; Sequence of the circle junction of human immunodeficiency virus type 1: implications for reverse transcription and integration. Journal of Virology 64:4903–4906
    [Google Scholar]
  69. Winkler I., Bodem J., Haas L., Zemba M., Delius H., Flower R., Flugel R. M., Lochelt M. 1997; Characterization of the genome of feline foamy virus and its proteins shows features different from those of primate spumaviruses. Journal of Virology 71:6727–6741
    [Google Scholar]
  70. Wiskerchen M., Muesing M. A. 1995; Human immunodeficiency virus type 1 integrase: effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates, and sustain viral propagation in primary cells. Journal ofVirology 69:376–386
    [Google Scholar]
  71. Yu S. F., Baldwin D. N., Gwynn S. R., Yendapalli S., Linial M. L. 1996; Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science 271:1579–1582
    [Google Scholar]
  72. Yu S. F., Sullivan M. D., Linial M. L. 1999; Evidence that the human foamy virus genome is DNA. Journal of Virology 73: (in press)
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-6-1445
Loading
/content/journal/jgv/10.1099/0022-1317-80-6-1445
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error