1887

Abstract

Studies were performed to determine if the unique N-terminal domain of the R1 subunit from herpes simplex virus (HSV) type 1 ribonucleotide reductase is a substrate for casein kinase 2 (CK2). Transphosphorylation assays demonstrated that R1 was highly phosphorylated by this enzyme with multiple phosphorylation sites mapped to the N terminus between residues 1 and 245. Immunoprecipitation pull-down assays using R1-specific antisera failed to demonstrate a stable interaction between R1 and CK2 but residual amounts of CK2 present after immunoprecipitation efficiently transphosphorylated R1. Activity assays with a peptide substrate identified CK2 in R1 immunoprecipitated from infected-cell extracts but did not detect activity in R1 proteins immunoprecipitated from bacterial extracts. However, Western blotting identified potential E. coli homologues of the CK2 alpha and beta subunits. These results support conclusions that the N-terminal domain of HSV R1 is not a protein kinase and that all previous results can be explained by contaminating kinases, principally CK2.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-6-1471
1999-06-01
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/6/0801471a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-6-1471&mimeType=html&fmt=ahah

References

  1. Ali M. A. 1995; The 140-kDa RR1 protein from both HSV-1 and HSV-2 contains an intrinsic protein kinase activity capable of auto-phosphorylation but it is transphosphorylation defective. Virology 207:409–416
    [Google Scholar]
  2. Bojanowski K., Filhol O., Cochet C., Chambaz E. M., Larsen A. K. 1993; DNA topoisomerase II and casein kinase II associate in a molecular complex that is catalytically active. Journal of Biological Chemistry 268:22920–22926
    [Google Scholar]
  3. Cameron J. M., McDougall I., Marsden H. S., Preston V. G., Ryan D. M., Subak-Sharpe J. H. 1988; Ribonucleotide reductase encoded by herpes simplex virus is a determinant of the pathogenicity of the virus and a valid antiviral target. Journal of General Virology 69:2607–2612
    [Google Scholar]
  4. Chung T. D., Wymer J. P., Kulka M., Smith C. C., Aurelian L. 1989; Protein kinase activity associated with the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). Journal of Virology 63:3389–3398
    [Google Scholar]
  5. Clements G. B., Stow N. D. 1989; A herpes simplex virus type 1 mutant containing a deletion within immediate early gene 1 is latency competent in mice. Journal of General Virology 70:2501–2506
    [Google Scholar]
  6. Clements J. B., Watson R. J., Wilkie N. M. 1977; Temporal regulation of HSV type 1 transcripts: location of transcripts on the viral genome. Cell 12:275–285
    [Google Scholar]
  7. Cohen E. A., Gaudreau P., Brazeau P., Langelier Y. 1986; Specific inhibition of herpesvirus ribonucleotide reductase by a nona-peptide derived from the carboxy terminus of subunit 2. Nature 321:441–443
    [Google Scholar]
  8. Conner J., Cooper J., Furlong J., Clements J. B. 1992a; Anautophosphorylating but not transphosphorylating activity is associated with the unique N-terminus of the herpes simplex virus type 1 ribonucleotide reductase large subunit. JournalofVirology 66:7511–7516
    [Google Scholar]
  9. Conner J., MacFarlane J., Lankinen H., Marsden H. 1992b; The unique N terminus of the herpes simplex virus type 1 large subunit is not required for ribonucleotide reductase activity. Journal of General Virology 73:103–112
    [Google Scholar]
  10. Conner J., Furlong J., Murray J., Meighan M., Cross A., Marsden H., Clements J. B. 1993; Herpes simplex virus type 1 ribonucleotide reductase large subunit: regions of the protein essential for subunit interaction and dimerisation. Biochemistry 32:13673–13680
    [Google Scholar]
  11. Conner J., Marsden H., Clements J. B. 1994a; Ribonucleotide reductase of herpesviruses. Reviews in Medical Virology 4:25–34
    [Google Scholar]
  12. Conner J., Cross A., Murray J., Marsden H. 1994b; Identification of structural domains within the large subunit of herpes simplex virus ribonucleotide reductase. Journal of General Virology 75:3327–3335
    [Google Scholar]
  13. Conner J., Murray J., Cross A., Clements J. B., Marsden H. 1995; Intracellular localization of herpes simplex virus type 1 ribonucleotide reductase during infection of cultured cells. Virology 213:615–623
    [Google Scholar]
  14. Cooper J., Conner J., Clements J. B. 1995; Characterization of the novel protein kinase activity present in the R1 subunit of herpes simplex virus ribonucleotide reductase. Journal of Virology 69:4979–4985
    [Google Scholar]
  15. Desai P., Ramakrishnan R., Liu Z. W., Osak B., Glorioso J. C., Levine M. 1993; The RR1 gene of herpes simplex virus type 1 is uniquely trans activated by ICP0 during infection. Journal of Virology 67:6125–6135
    [Google Scholar]
  16. deWind N., Berns A., Gielkens A., Kinman T. 1993; Ribonucleotide reductase-deficient mutants of pseudorabies virus are avirulent for pigs and induce partial protective immunity. Journal of General Virology 74:351–359
    [Google Scholar]
  17. Dutia B. M., Frame M. C., Subak-Sharpe J. H., Clark W. N., Marsden H. S. 1986; Specific inhibition of herpesvirus ribonucleotide reductase by synthetic peptides. Nature 321:439–441
    [Google Scholar]
  18. Edelman A. M., Blumenthal D. K., Krebs E. G. 1987; Protein serine/threonine kinases. Annual Review of Biochemistry 56:567–0613
    [Google Scholar]
  19. Filhol O., Baudier J., Delphin C., Loue-Mackenbach P., Chambaz E. M., Cochet C. 1992; Casein kinase II and the tumor suppressor protein P53 associate in a molecular complex that is negatively regulated upon P53 phosphorylation. Journal of Biological Chemistry 267:20577–20583
    [Google Scholar]
  20. Heineman T. C., Cohen J. I. 1994; Deletion of the varicella-zoster virus large subunit of ribonucleotide reductase impairs growth of the virus. Journal of Virology 68:3317–3323
    [Google Scholar]
  21. Jacobson J. G., Leib D. A., Goldstein D. J., Bogard C. L., Schaffer P.A., Weller S.K., Coen D.M. 1989; A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive and reactivatable latent infections of mice and for replication in mouse cells. Virology 173:276–83
    [Google Scholar]
  22. Langelier Y., Champoux L., Hamel M., Guilbault C., Lamarche N., Gaudreau P., Massie B. 1998; The R1 subunit of herpes simplex virus ribonucleotide reductase is a good substrate for host cell protein kinases but is not itself a protein kinase. Journal of Biological Chemistry 273:1435–1443
    [Google Scholar]
  23. Lankinen H., Everett R., Cross A., Conner J., Marsden H. S. 1993; Epitope mapping identifies an exposed loop between the unique amino- and conserved carboxy-domains of the large subunit of herpes simplex virus type 1 ribonucleotide reductase. Journal of General Virology 74:1871–1877
    [Google Scholar]
  24. Leib D. A., Coen D. M., Bogard C. L., Hicks K. A., Yager D. R., Knipe D. M., Tyler K. L., Schaffer P. A. 1989; Immediate early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. Journal of Virology 63:759–768
    [Google Scholar]
  25. Liuzzi M., Deziel R., Moss N., Beaulieu P., Bonneau A. M., Bousquet C., Chafouleas J. G., Garneau M., Jaramillo J., Krogsrud R. L., Lagace L., McCollum R. S., Nawoot S., Guidon Y. 1994; Am potent peptidomimetic inhibitor of HSV ribonucleotide reductase with antiviral activity in vivo. Nature 372:695–698
    [Google Scholar]
  26. Luo J. H., Aurelian L. 1992; The transmembrane helical segment but not the invariant lysine is required for the kinase activity of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). Journal of Biological Chemistry 267:9645–9654
    [Google Scholar]
  27. Luo J. H., Smith C. C., Kulka M., Aurelian L. 1991; A truncated protein kinase domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) expressed in Escherichia coli. Journal of Biological Chemistry 266:20976–20983
    [Google Scholar]
  28. Marcello A., Loregian A., Cross A., Marsden H., Hirst T. R., Palu G. 1994; Specific inhibition of herpes virus replication by receptor mediated entry of an antiviral peptide linked to Escherichia coli enterotoxin B subunit. Proceedings of the National Academy of Sciences, USA 91:8994–8998
    [Google Scholar]
  29. Paradis H., Gaudreau P., Massie B., Lamarche N., Guilbault C., Gravel S., Langelier Y. 1991; Affinity purification of active subunit 1 of herpes simplex virus type 1 ribonucleotide reductase exhibiting a protein kinase activity. Journal of Biological Chemistry 266:9647–9651
    [Google Scholar]
  30. Pearson R. B., Kemp B. E. 1991; Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods in Enzymology 200:62–81
    [Google Scholar]
  31. Peng T., Hunter J. R. C., Nelson J. W. 1996; The novel protein kinase of the RR1 subunit of herpes simplex virus has auto–phosphorylation and transphosphorylation activity that differs in its ATP for HSV-1 and HSV-2. Virology 216:184–196
    [Google Scholar]
  32. Reichard P. 1993; From RNA to DNA, why so many ribonucleotide reductases. Science 260:1773–1777
    [Google Scholar]
  33. Russell J., Stow N. D., Stow E. C., Preston C. M. 1987; Herpes simplex virus genes involved in latency in vitro. Journal of General Virology 68:3009–3018
    [Google Scholar]
  34. Smith C. C., Luo J. H., Aurelian L. 1996; The protein kinase activity of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) fused to the extracellular domain of the epidermal growth factor receptor is ligand inducible. Virology 217:425–434
    [Google Scholar]
  35. Wymer J. P., Chung T. D., Chang Y.-N., Hayward G. S., Aurelian L. 1989; Identification of immediate early type cis response elements in the promoter for the ribonucleotide reductase large subunit from herpes simplex virus type 2. Journal of Virology 63:2773–2784
    [Google Scholar]
  36. Wymer J. P., Aprhys C. M. J., Chung T. D., Feng C. P., Kulka M., Aurelian L. 1992; Immediate early and functional AP-1 cis response elements are involved in the transcriptional regulation of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). Virus Research 23:253–270
    [Google Scholar]
  37. Yamada Y., Kimura H., Morishima T., Daikoku T., Maeno K., Nishiyama Y. 1991; The pathogenicity of ribonucleotide reductase null mutants of herpes simplex virus type 1 in mice. Journal of Infectious Diseases 164:1091
    [Google Scholar]
  38. Zhu J., Aurelian L. 1997; AP-1 cis-response elements are involved in basal expression and Vmw110 transactivation of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). Virology 231:301–312
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-6-1471
Loading
/content/journal/jgv/10.1099/0022-1317-80-6-1471
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error