1887

Abstract

Recombinant E glycoprotein of bovine viral diarrhoea virus (BVDV) has been tagged with a marker epitope or linked to an immunoglobulin Fc tail and expressed in insect and mammalian cell lines. The product was shown to be functional, both having ribonuclease activity and binding to a variety of cells that were permissive and non-permissive for replication of BVDV. Addition of soluble E to the medium blocked replication of BVDV in permissive cells. Binding of epitope-tagged E to permissive calf testes (CTe) cells was abolished and virus infection was reduced when cells were treated with heparinases I or III. E failed to bind to mutant Chinese hamster ovary (CHO) cells that lacked glycosaminoglycans (pgsA-745 cells) or heparan sulphate (pgsD-677 cells) but bound to normal CHO cells. E also bound to heparin immobilized on agarose and could be eluted by heparin and by a high concentration of salt. Flow cytometric analysis of E binding to CTe cell cultures showed that glycosaminoglycans such as heparin, fucoidan and dermatan sulphate all inhibit binding but dextran sulphate, keratan sulphate, chondroitin sulphate and mannan fail to inhibit binding. The low molecular mass polysulphonated inhibitor suramin also inhibited binding to CTe cells but poly--lysine did not. Furthermore, suramin, the suramin analogue CPD14, fucoidan and pentosan polysulphate inhibited the infectivity of virus. It is proposed that binding of E to cells is through an interaction with glycosaminoglycans and that BVDV may bind to cells initially through this interaction.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-2-451
2000-02-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/2/0810451a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-2-451&mimeType=html&fmt=ahah

References

  1. Asagoe, T., Inaba, Y., Jusa, E. R., Kouno, M., Uwatoko, K. & Fukunaga, Y. (1997). Effect of heparin on infection of cells by equine arteritis virus. Journal of Veterinary Medical Science 59, 727-728.[CrossRef] [Google Scholar]
  2. Becher, P., Orlich, M., Shannon, A. D., Horner, G., König, M. & Thiel, H.-J. (1997). Phylogenetic analysis of pestiviruses from domestic and wild ruminants. Journal of General Virology 78, 1357-1366. [Google Scholar]
  3. Braddock, P. S., Hu, D. E., Fan, T. P. D., Stratford, I. J., Harris, A. L. & Bicknell, R. (1994). A structure-activity analysis of antagonism of the growth factor and angiogenic activity of basic growth factor by suramin and related polyanions. British Journal of Cancer 69, 890-898.[CrossRef] [Google Scholar]
  4. Brownlie, J. (1991). The pathway for bovine virus diarrhoea virus biotypes in the pathogenesis of disease. Archives of Virology Supplement 3, 79-96. [Google Scholar]
  5. Bruschke, C. J. M., Hulst, M. M., Moormann, R. J. M., van Rijn, P. A. & van Oirschot, J. T. (1997). Glycoprotein Erns of pestiviruses induces apoptosis in lymphocytes of several species. Journal of Virology 71, 6692-6696. [Google Scholar]
  6. Byrnes, A. P. & Griffin, D. E. (1998). Binding of Sindbis virus to cells surface heparan sulfate. Journal of Virology 72, 7349-7356. [Google Scholar]
  7. Chen, Y., Maguire, T., Hileman, R. E., Fromm, J. R., Esko, J. D., Linhardt, R. J. & Marks, R. M. (1997). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nature Medicine 3, 866-871.[CrossRef] [Google Scholar]
  8. Chung, C.-S., Hsaio, J.-C., Chang, Y.-S. & Chang, W. (1998). A27L protein-mediated vaccinia virus interaction with cell surface heparan sulfate. Journal of Virology 72, 1577-1585. [Google Scholar]
  9. Collett, M. S., Larson, R., Gold, C., Strick, D., Anderson, D. K. & Purchio, A. F. (1988a). Molecular cloning and nucleotide sequence of pestivirus bovine viral diarrhea virus. Virology 165, 191-199.[CrossRef] [Google Scholar]
  10. Collett, M. S., Larson, R., Belzer, S. K. & Retzel, E. (1988b). Proteins encoded by bovine viral diarrhea virus: the genomic organization of a pestivirus. Virology 165, 200-208.[CrossRef] [Google Scholar]
  11. Compton, T., Nowlin, D. M. & Cooper, N. R. (1993). Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate. Virology 193, 834-841.[CrossRef] [Google Scholar]
  12. Dekker, A., Wensvoort, G. & Terpstra, C. (1995). Six antigenic groups within the genus pestivirus as identified by cross neutralization assays. Veterinary Microbiology 47, 317-329.[CrossRef] [Google Scholar]
  13. Doms, R. W. & Peiper, S. C. (1997). Unwelcomed guests with master keys: how HIV uses chemokine receptors for cellular entry. Virology 235, 179-190.[CrossRef] [Google Scholar]
  14. Donis, R. O. & Dubovi, E. J. (1987a). Characterization of bovine viral diarrhoea-mucosal disease virus-specific proteins in bovine cells. Journal of General Virology 68, 1597-1605.[CrossRef] [Google Scholar]
  15. Donis, R. O. & Dubovi, E. J. (1987b). Glycoproteins of bovine viral diarrhoea-mucosal disease virus in infected bovine cells. Journal of General Virology 68, 1607-1616.[CrossRef] [Google Scholar]
  16. Donis, R. O., Corapi, W. V. & Dubovi, E. J. (1988). Neutralizing monoclonal antibodies to bovine viral diarrhoea virus binds to the 56K to 58K glycoprotein. Journal of General Virology 69, 77-86.[CrossRef] [Google Scholar]
  17. Esko, J. D., Stewart, T. E. & Taylor, W. H. (1985). Animal cell mutants defective in glycosaminoglycan synthesis. Proceedings of the National Academy of Sciences, USA 82, 3197-3201.[CrossRef] [Google Scholar]
  18. Garson, J. A., Lubach, D., Passas, J., Whitby, K. & Grant, P. R. (1999). Suramin blocks hepatitis C binding hepatoma cells in vitro. Journal of Medical Virology 57, 238-242.[CrossRef] [Google Scholar]
  19. Gillespie, J. H., Baker, J. A. & McEntee, K. (1960). A Cytopathogenic strain of virus diarrhea virus. Cornell Veterinary 50, 73-79. [Google Scholar]
  20. Hulst, M. M. & Moormann, R. J. M. (1997). Inhibition of pestivirus infection in cell culture by envelope proteins Erns and E2 of classical swine fever virus: Erns and E2 interact with different receptors. Journal of General Virology 78, 2779-2787. [Google Scholar]
  21. Hulst, M. M., Westra, D. F., Wensvoort, G. & Moormann, R. J. M. (1993). Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera. Journal of Virology 67, 5435-5442. [Google Scholar]
  22. Hulst, M. M., Himes, G., Newbigin, E. & Moormann, R. J. M. (1994). Glycoprotein E2 of classical swine fever virus: expression in insect cells and identification as a ribonuclease. Virology 200, 558-565.[CrossRef] [Google Scholar]
  23. Jackson, T., Ellard, F. M., Ghazaleh, R. A., Brookes, S. M., Blakemore, W. E., Corteyn, A. H., Stuart, D. I., Newman, J. W. I. & King, A. M. (1996). Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulphate. Journal of Virology 70, 5282-5287. [Google Scholar]
  24. Jusa, E. R., Inaba, Y., Kouno, M. & Hirose, O. (1997). Effect of heparin on infection of cells by porcine reproductive and respiratory syndrome virus. American Journal of Veterinary Research 58, 488-491. [Google Scholar]
  25. Klimstra, W. B., Ryman, K. D. & Johnston, R. E. (1998). Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. Journal of Virology 72, 7357-7366. [Google Scholar]
  26. König, M., Lengsfeld, T., Pauly, T., Stark, R. & Thiel, H.-J. (1995). Classical swine fever virus: independent induction of protective immunity by two structural proteins. Journal of Virology 69, 6479-6486. [Google Scholar]
  27. Krusat, T. & Streckert, H.-J. (1997). Heparin-dependent attachment of respiratory syncytial virus (RSV) to host cells. Archives of Virology 142, 1247-1254.[CrossRef] [Google Scholar]
  28. Laquerre, S., Argnani, R., Anderson, D. B., Zucchini, S., Manservigi, R. & Glorioso, J. C. (1998). Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. Journal of Virology 72, 6119-6130. [Google Scholar]
  29. Lee, K. L. & Gillespie, J. H. (1957). Propagation of virus diarrhea virus of cattle in tissue culture. American Journal of Veterinary Research 18, 952-953. [Google Scholar]
  30. Lidholt, K., Weinke, J. L., Kiser, C. S., Lugemwa, F. N., Bame, K. J., Cheifetz, S., Massague, J., Lindahl, U. & Esko, J. D. (1992). A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proceedings of the National Academy of Sciences, USA 89, 2267-2271.[CrossRef] [Google Scholar]
  31. Mastromarino, P., Conti, C., Petruzziello, R., Lapadula, R. & Orsi, N. (1991). Effect of polyions on the early events of Sindbis virus infection of Vero cells. Archives of Virology 121, 19-27.[CrossRef] [Google Scholar]
  32. Mettenleiter, T. C., Zsak, L., Zuckermann, F., Sugg, N., Kern, H. & Ben-Porat, T. (1990). Interaction of glycoprotein gIII with cellular heparin-like substance mediates adsorption of pseudorabies virus. Journal of Virology 64, 278-286. [Google Scholar]
  33. Okazaki, K., Matsuzaki, T., Sugahara, Y., Okada, J., Hasebe, M., Iwamura, Y., Ohnishi, M., Kanno, T., Shimizu, M., Honda, E. & Kono, Y. (1991). BHV-1 adsorption is mediated by the interaction of glycoprotein gIII with heparin–like moiety on the cell surface. Virology 181, 666-670.[CrossRef] [Google Scholar]
  34. Pellerin, C., van den Hurk, J., Lecomte, J. & Tijssen, P. (1994). Identification of a new group of bovine viral diarrhea virus strains associated with severe outbreaks and high mortalities. Virology 203, 260-268.[CrossRef] [Google Scholar]
  35. Pocock, D. H., Howard, C. J., Clarke, M. C. & Brownlie, J. (1987). Variation in the intracellular polypeptide profiles from different isolates of BVDV. Archives of Virology 94, 43-53.[CrossRef] [Google Scholar]
  36. Ridpath, J. F., Bolin, S. R. & Dubovi, E. J. (1994). Segregation of bovine viral diarrhea virus into genotypes. Virology 205, 66-74.[CrossRef] [Google Scholar]
  37. Roderiquez, G., Oravecz, T., Yanagishita, M., Bou-Habib, D. C., Mostowski, H. & Norcross, M. A. (1995). Mediation of human immunodeficiency virus type 1 binding by interaction of cell surface heparan sulphate proteoglycans with the V3 region of envelope gp120-gp41. Journal of Virology 69, 2233-2239. [Google Scholar]
  38. Rümenapf, T., Stark, R. G., Meyers, G. & Thiel, H.-J. (1991). Structural proteins of hog cholera virus expressed by vaccinia virus: further characterization and induction of protective immunity. Journal of Virology 65, 589-597. [Google Scholar]
  39. Rümenapf, T., Unger, G., Strauss, J. H. & Thiel, H.-J. (1993). Processing of the envelope glycoproteins of pestiviruses. Journal of Virology 67, 3288-3294. [Google Scholar]
  40. Sa-Carvalho, D., Reider, E., Baxt, B., Rodarte, R., Tanuri, A. & Mason, P. W. (1997). Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. Journal of Virology 71, 5115-5123. [Google Scholar]
  41. Sattentau, Q. J. & Weiss, R. A. (1991). The CD4 antigen: physiological ligand and HIV receptor. Cell 52, 631-633. [Google Scholar]
  42. Schelp, C., Greiser-Wilke, I., Wolf, G., Beer, M., Moennig, V. & Liess, B. (1995). Identification of cell membrane proteins linked to susceptibility to bovine viral diarrhoea virus infection. Archives of Virology 140, 1997-2009.[CrossRef] [Google Scholar]
  43. Schneider, R., Unger, G., Stark, R., Schneider-Scherzer, E. & Thiel, H.-J. (1993). Identification of a structural glycoprotein of an RNA virus as a ribonuclease. Science 261, 1169-1171.[CrossRef] [Google Scholar]
  44. Summerford, C. & Samulski, R. J. (1998). Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. Journal of Virology 72, 1438-1445. [Google Scholar]
  45. Thiel, H.-J., Stark, R., Weiland, E., Rümenapf, T. & Meyers, G. (1991). Hog cholera virus: molecular composition of virions from a pestivirus. Journal of Virology 65, 4705-4712. [Google Scholar]
  46. Thompson, W. R. (1947). Use of moving averages and interpolation to estimate median-effective dose. Bacteriological Reviews 11, 115-145. [Google Scholar]
  47. Vanderplasschen, A., Bublot, M., Dubuisson, J., Pastoret, P.-P. & Thiry, E. (1993). Attachment of the gammaherpesvirus bovine herpesvirus 4 is mediated by the interaction of gp8 glycoprotein with heparin like moieties on the cell surface. Virology 196, 232-240.[CrossRef] [Google Scholar]
  48. van Rijn, P. A., van Gennip, H. G. P., Leendertse, C. H., Bruschke, C. J. M., Paton, D. J., Moormann, R. J. M. & Van Oirschot, J. T. (1997). Subdivision of the pestivirus genus based on envelope glycoprotein E2. Virology 237, 337-348.[CrossRef] [Google Scholar]
  49. van Zijl, M., Wensvoort, G., de Kluyver, E., Hulst, M., van der Gulden, H., Gielkens, A., Berns, A. & Moormann, R. J. M. (1991). Live attenuated pseudorabies virus expressing envelope glycoprotein E1 of hog cholera virus protects swine against both pseudorabies and hog cholera. Journal of Virology 65, 2761-2765. [Google Scholar]
  50. Weiland, E., Stark, R., Haas, B., Rümenapf, T., Meyers, G. & Thiel, H.-J. (1990). Pestivirus glycoprotein which induces neutralizing antibodies forms part of a disulfide-linked heterodimer. Journal of Virology 64, 3563-3569. [Google Scholar]
  51. Weiland, E., Stark, R., Weiland, F. & Thiel, H.-J. (1992). A second envelope glycoprotein mediates neutralization of a pestivirus, hog cholera virus. Journal of Virology 66, 3677-3682. [Google Scholar]
  52. Weiland, F., Weiland, E., Unger, G., Saalmüller, A. & Thiel, H.-J. (1999). Localization of pestiviral envelope proteins Erns and E2 at the cell surface and on isolated particles. Journal of General Virology 80, 1157-1165. [Google Scholar]
  53. Wengler, G., Bradley, D. W., Collett, M. S., Heinz, F. X., Schlesinger, R. W. & Strauss, J. H. (1995).Flaviviridae. In Virus Taxonomy. Sixth Report of the International Committee on Taxonomy of Viruses, pp. 415-427. Edited by F. A. Murphy, C. M. Fauquet, D. H. L. Bishop, S. A. Ghabrial, A. W. Jarvis, G. P. Martelli, M. A. Mayo & M. D. Summers. Vienna & New York: Springer-Verlag.
  54. Windisch, J. M., Schneider, R., Stark, R., Weiland, E., Meyers, G. & Thiel, H.-J. (1996). RNase of classical swine fever virus: biochemical characterization and inhibition by virus-neutralizing monoclonal antibodies. Journal of Virology 70, 352-358. [Google Scholar]
  55. WuDunn, D. & Spear, P. (1989). Initial interaction of herpes simplex virus with cells is binding to heparin sulfate. Journal of Virology 63, 52-58. [Google Scholar]
  56. Xue, W. & Minocha, H. C. (1993). Identification of the cell surface receptor for bovine viral diarrhoea virus by using anti-idiotypic antibodies. Journal of General Virology 74, 73-79.[CrossRef] [Google Scholar]
  57. Zhang, G., Aldridge, S., Clarke, M. C. & McCauley, J. W. (1996). Cell death induced by cytopathic bovine viral diarrhoea virus is mediated by apoptosis. Journal of General Virology 77, 1677-1681.[CrossRef] [Google Scholar]
  58. Zhu, Z., Gershon, M. D., Ambron, R., Gabel, C. & Gershon, A. E. (1995). Infection of cells by varicella zoster virus: inhibition of viral entry by mannose 6-phosphate and heparin. Proceedings of the National Academy of Sciences, USA 92, 3546-3550.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-2-451
Loading
/content/journal/jgv/10.1099/0022-1317-81-2-451
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error