1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-12-2839
2001-12-01
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/12/0822839a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-12-2839&mimeType=html&fmt=ahah

References

  1. Anderson E. D., Thomas L., Hayflick J. S., Thomas G. 1993; Inhibition of HIV-1 gp160-dependent membrane fusion by a furin-directed α1-antitrypsin variant. Journal of Biological Chemistry 268:24887–24891
    [Google Scholar]
  2. Becker S., Spiess M., Klenk H.-D. 1995; The asialoglycoprotein receptor is a potential liver-specific receptor for Marburg virus. Journal of General Virology 76:393–399
    [Google Scholar]
  3. Becker S., Klenk H.-D., Mühlberger E. 1996; Intracellular transport and processing of the Marburg virus surface protein in vertebrate and insect cells. Virology 225:145–155
    [Google Scholar]
  4. Bukreyev A. A., Volchkov V. E., Blinov V. M., Dryga S. A., Netesov S. V. 1995; The complete nucleotide sequence of the Popp (1967) strain of Marburg virus: a comparison with the Musoke (1980) strain. Archives of Virology 140:1589–1600
    [Google Scholar]
  5. Bullough P. A., Hughson F. M., Skehel J. J., Wiley D. C. 1994; Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371:37–43
    [Google Scholar]
  6. Burton D. R., Parren P. W. H. I. 2000; Fighting the Ebola virus. Nature 408:527–528
    [Google Scholar]
  7. Chan D. C., Fass D., Berger J. M., Kim P. S. 1997; Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273
    [Google Scholar]
  8. Chan S. Y., Ma M. C., Goldsmith M. A. 2000a; Differential induction of cellular detachment by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. Journal of General Virology 81:2155–2159
    [Google Scholar]
  9. Chan S. Y., Speck R. F., Ma M. C., Goldsmith M. A. 2000b; Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. Journal of Virology 74:4933–4937
    [Google Scholar]
  10. Chan S., Empig C. J., Wellter F. J., Speck R. F., Schmaljohn A., Kreisberg J. F., Goldsmith M. A. 2001; Folate receptor-α is a cofactor for cellular entry by Marburg and Ebola viruses. Cell 106:117–126
    [Google Scholar]
  11. Dessen A., Volchkov V., Dolnik O., Klenk H.-D., Weissenhorn W. 2000; Crystal structure of the matrix protein VP40 from Ebola virus. EMBO Journal 19:4228–4236
    [Google Scholar]
  12. Feldmann H., Klenk H.-D. 1996; Marburg and Ebola viruses. Advances in Virus Research 47:1–52
    [Google Scholar]
  13. Feldmann H., Kiley M. P. 1999; Classification, structure, and replication of filoviruses. Current Topics in Microbiology and Immunology 235:1–21
    [Google Scholar]
  14. Feldmann H., Will C., Schikore M., Slenczka W., Klenk H.-D. 1991; Glycosylation and oligomerization of the spike protein of Marburg virus. Virology 182:353–356
    [Google Scholar]
  15. Feldmann H., Mühlberger E., Randolf A., Will C., Kiley M. P., Sanchez A., Klenk H.-D. 1992; Marburg virus, a filovirus: messenger RNAs, gene order, and regulatory elements of the replication cycle. Virus Research 24:1–19
    [Google Scholar]
  16. Feldmann H., Nichol S. T., Klenk H.-D., Peters C. J., Sanchez A. 1994; Characterization of filoviruses based on differences in structure and antigenicity of the virion glycoprotein. Virology 199:469–473
    [Google Scholar]
  17. Feldmann H., Sanchez A., Klenk H.-D. 1998; Filoviruses. In Microbiology and Microbial Infections pp 651–664 Edited by Collier L. H. London: Edward Arnold;
    [Google Scholar]
  18. Feldmann H., Volchkov V. E., Volchkova V. A., Klenk H.-D. 1999; The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis. Archives of Virology 15:159–169
    [Google Scholar]
  19. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. 1996; HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877
    [Google Scholar]
  20. Fisher-Hoch S. P., Brammer T. L., Trappier S. G., Hutwagner L. C., Farrar B. B., Ruo S. L., Brown B. G., Hermann L. M., Perez-Oronoz G. I., Goldsmith C. S. and others 1992; Pathogenic potential of filoviruses: role of geographic origin of primate host and virus strain. Journal of Infectious Diseases 166:753–763
    [Google Scholar]
  21. Funke C., Becker B., Dartsch H., Klenk H.-D., Mühlberger E. 1995; Acylation of the Marburg virus glycoprotein. Virology 208:289–297
    [Google Scholar]
  22. Gallaher W. R. 1996; Similar structural models of the transmembrane proteins of Ebola and avian sarcoma viruses. Cell 85:477–478
    [Google Scholar]
  23. Geisbert T. W., Jahrling P. B. 1995; Differentiation of filoviruses by electron microscopy. Virus Research 39:129–150
    [Google Scholar]
  24. Geyer H., Will C., Feldmann H., Klenk H.-D., Geyer R. 1992; Carbohydrate structure of Marburg virus glycoprotein. Glycobiology 2:299–312
    [Google Scholar]
  25. Hevey M., Negley D., Geisbert J., Jahrling P., Schmaljohn A. 1998; Antigenicity and vaccine potential of Marburg virus glycoprotein expressed by baculovirus recombinants. Virology 239:206–216
    [Google Scholar]
  26. Ignatyev G. M. 1999; Immune response to filovirus infections. Current Topics in Microbiology and Immunology 235:205–217
    [Google Scholar]
  27. Ito H., Watanabe S., Sanchez A., Whitt M. A., Kawaoka Y. 1999; Mutational analysis of the putative fusion domain of Ebola virus glycoprotein. Journal of Virology 73:8907–8912
    [Google Scholar]
  28. Ito H., Watanabe S., Takada A., Kawaoka Y. 2001; Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. Journal of Virology 75:1576–1580
    [Google Scholar]
  29. Joshi S. B., Dutch R. E., Lamb R. A. 1998; A core trimer of the paramyxovirus fusion protein: parallels to influenza virus hemagglutinin and HIV-1 gp41. Virology 248:20–34
    [Google Scholar]
  30. Kindzelskii A. L., Yang Z., Nabel G. J., Todd R. F.III., Petty H. R. 2000; Ebola virus secretory glycoprotein (sGP) diminishes FcγRIIIB-to-CR3 proximity on neutrophils. Journal of Immunology 164:953–958
    [Google Scholar]
  31. Klenk H. 2000; Will we have and why do we need an Ebola vaccine?. Nature Medicine 6:1322–1323
    [Google Scholar]
  32. Klenk H.-D., Garten W. 1994a; Activation cleavage of viral spike proteins by host proteases. In Cellular Receptors for Animal Viruses pp 241–280 Edited by Wimmer E. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Klenk H.-D., Garten W. 1994b; Host cell proteases controlling virus pathogenicity. Trends in Microbiology 2:39–43
    [Google Scholar]
  34. Klenk H.-D., Volchkov V. E., Feldmann H. 1998; Two strings to the bow of Ebola virus. Nature Medicine 4:388–389
    [Google Scholar]
  35. Malashkevich V. N., Schneider B. J., McNally M. L., Milhollen M. A., Pang J. X., Kim P. S. 1999; Core structure of the envelope glycoprotein GP2 from Ebola virus at 1·9 Å resolution. Proceedings of the National Academy of Sciences, USA 96:2662–2667
    [Google Scholar]
  36. Mariyankova R. F., Giushakowa S. E., Pyzhik E. V., Lukashevich I. S. 1993; Marburg virus penetration into eukaryotic cells. Voprosy Virusologii 2:74–76
    [Google Scholar]
  37. Maruyama T., Buchmeier M. J., Parren P. W. H. I., Burton D. R. 1998; Ebola virus, neutrophils and antibody specificity. Science 282:845
    [Google Scholar]
  38. Maruyama T., Rodriguez L. L., Jahrling P. B., Sanchez A., Khan A. S., Nichol S. T., Peters C. J., Parren P. W., Burton D. R. 1999; Ebola virus can be effectively neutralized by antibody produced in natural human infection. Journal of Virology 73:6024–6030
    [Google Scholar]
  39. Molloy S. S., Thomas L., van Slyke J. K., Stenberg P. E., Thomas G. 1994; Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO Journal 13:18–33
    [Google Scholar]
  40. Mühlberger E., Lotfering B., Klenk H.-D., Becker S. 1998; Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. Journal of Virology 72:8756–8764
    [Google Scholar]
  41. Mühlberger E., Weik M., Volchkov V. E., Klenk H.-D., Becker S. 1999; Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. Journal of Virology 73:2333–2342
    [Google Scholar]
  42. Mupapa K. D., Massamba M., Kibadi K., Kuvula K., Bwaka A., Kipasa M., Colebunders R., Muyembe-Tamfum J. J. 1999; Treatment of Ebola haemorrhagic fever with blood transfusions from convalescent patients. Journal of Infectious Diseases 179:S18–S23
    [Google Scholar]
  43. Neumann G., Feldmann H., Watanabe S., Lukashevich I., Kawaoka Y. 2001; Generation of Ebola virus entirely from cloned cDNA: new opportunities in experimental filovirus research. Journal of Virology (submitted
    [Google Scholar]
  44. Peters C. J., LeDuc J. W. 1999; Ebola: the virus and the disease. Journal of Infectious Diseases 179:S1–S288
    [Google Scholar]
  45. Peters C. J., Sanchez A., Rollin P. E., Ksiazek T. G., Murphy F. A. 1996; Filoviridae : Marburg and Ebola viruses. In Fields Virology pp 1161–1176 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  46. Pushko P., Bray M., Ludwih G. V., Parker M., Schmaljohn A., Sanchez A., Jahrling P. B., Smith J. F. 2000; Recombinant RNA replicons derived from attenuated Venezuelan equine encephalitis virus protect guinea pigs and mice from Ebola haemorrhagic fever virus. Vaccine 19:142–153
    [Google Scholar]
  47. Ruigrok R. W. H., Schoehn G., Dessen A., Forest E., Volchkov V., Dolnik O., Klenk H.-D., Weissenhorn W. 2000; Structural characterization and membrane binding properties of the matrix protein VP40 of Ebola virus. Journal of Molecular Biology 300:103–112
    [Google Scholar]
  48. Ruiz-Argüello M. B., Goni F. M., Pereira F. B., Nieva J. L. 1998; Phosphatidylinositol-dependent membrane fusion induced by a putative fusogenic sequence of Ebola virus. Journal of Virology 72:1775–1781
    [Google Scholar]
  49. Ryabchikova E., Kolesnikova L. V., Luchko S. V. 1999; An analysis of features of pathogenesis in two animal models of Ebola virus infection. Journal of Infectious Diseases 179:S199–S202
    [Google Scholar]
  50. Sanchez A., Kiley M. P., Holloway B. P., Auperin D. D. 1993; Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Research 29:215–240
    [Google Scholar]
  51. Sanchez A., Trappier S. G., Mahy B. W. J., Peters C. J., Nichol S. T. 1996; The virion glycoprotein of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proceedings of the National Academy of Sciences, USA 93:3602–3607
    [Google Scholar]
  52. Sanchez A., Trappier S. G., Ströher U., Nichol S. T., Bowen M. D., Feldmann H. 1998a; Variation in the glycoprotein and VP35 genes of Marburg virus strains. Virology 240:138–146
    [Google Scholar]
  53. Sanchez A., Yang Z. Y., Xu L., Nabel G. J., Crews T., Peters C. J. 1998b; Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. Journal of Virology 72:6442–6447
    [Google Scholar]
  54. Schäfer W., Stroh A., Berghöfer S., Seiler J., Vey M., Kruse M. L., Kern H. F., Klenk H.-D., Garten W. 1995; Two independent targeting signals in the cytoplasmic domain determine trans-Golgi network localization and endosomal trafficking of the proprotein convertase furin. EMBO Journal 14:2424–2435
    [Google Scholar]
  55. Schnittler H. J., Feldmann H. 1999; Molecular pathogenesis of filovirus infections: role of macrophages and endothelial cells. Current Topics in Microbiology and Immunology 235:175–204
    [Google Scholar]
  56. Seidah N. G., Hamelin J., Mamarbachi M., Dong W., Tadro H., Mbikay M., Chretien M., Day R. 1996; cDNA structure, tissue distribution, and chromosomal localization of rat PC7, a novel mammalian proprotein convertase closest to yeast kexin-like proteinases. Proceedings of the National Academy of Sciences, USA 93:3388–3393
    [Google Scholar]
  57. Skehel J. J., Bayley P. M., Brown E. B., Martin S. R., Waterfield M. D., White J. M., Wilson I. A., Wiley D. C. 1982; Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proceedings of the National Academy of Sciences, USA 79:968–972
    [Google Scholar]
  58. Stieneke-Grober A., Vey M., Angliker A., Shaw E., Thomas G., Roberts C., Klenk H.-D., Garten W. 1992; Influenza virus haemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO Journal 11:2407–2414
    [Google Scholar]
  59. Sullivan N. J., Sanchez A., Rollin P. E., Yang Z., Nabel G. J. 2000; Development of a preventive vaccine for Ebola virus infection in primates. Nature 408:605–609
    [Google Scholar]
  60. Takada A., Robison C., Goto H., Sanchez A., Murti K. G., Whitt M. A., Kawaoka Y. 1997; A system for functional analysis of Ebola virus glycoprotein. Proceedings of the National Academy of Sciences, USA 94:14764–14769
    [Google Scholar]
  61. Takada A., Watanabe S., Ito H., Okazaki K., Kida H., Kawaoka Y. 2000; Downregulation of β1 integrins by Ebola virus glycoprotein: implication for virus entry. Virology 278:20–26
    [Google Scholar]
  62. Vanderzanden L., Bray M., Fuller D., Roberts T., Custer D., Spik K., Jahrling P., Huggins J., Schmaljohn A., Schmaljohn C. 1998; DNA vaccines expressing either the GP or NP genes of Ebola virus protect mice from lethal challenge. Virology 246:134–144
    [Google Scholar]
  63. van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. (editors) 2000; Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses San Diego: Academic Press;
    [Google Scholar]
  64. Vey M., Schäfer W., Reis B., Ohuchi R., Britt W., Garten W., Klenk H.-D., Radsak K. 1995; Proteolytic processing of human cytomegalovirus glycoprotein B (gpUL55) is mediated by the human endoprotease furin. Virology 206:746–749
    [Google Scholar]
  65. Volchkov V. E., Blinov V. M., Netesov S. V. 1992; The envelope glycoprotein of Ebola virus contains an immunosuppressive-like domain similar to oncogenic retroviruses. FEBS Letters 305:181–184
    [Google Scholar]
  66. Volchkov V. E., Becker S., Volchkova V. A., Ternovoj V. A., Kotov A. N., Netesov S. V., Klenk H.-D. 1995; GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214:421–430
    [Google Scholar]
  67. Volchkov V. E., Feldmann H., Volchkova V. A., Klenk H.-D. 1998a; Processing of the Ebola virus glycoprotein by the proprotein convertase furin . Proceedings of the National Academy of Sciences, USA 95:5762–5767
    [Google Scholar]
  68. Volchkov V. E., Volchkova V. A., Slenczka W., Klenk H.-D., Feldmann H. 1998b; Release of viral glycoproteins during Ebola virus infection. Virology 245:110–119
    [Google Scholar]
  69. Volchkov V. E., Chepurnov A. A., Volchkova V. A., Ternovoj V. A., Klenk H.-D. 2000a; Molecular characterization of guinea pig-adapted variants of Ebola virus. Virology 277:147–155
    [Google Scholar]
  70. Volchkov V. E., Volchkova V. A., Ströher U., Cieplik M., Becker S., Dolnik O., Garten W., Klenk H.-D., Feldmann H. 2000b; Proteolytic processing of Marburg virus glycoprotein. Virology 268:1–6
    [Google Scholar]
  71. Volchkov V. E., Volchkova V. A., Mühlberger E., Kolesnikova L. V., Weik M., Dolnik O., Klenk H.-D. 2001; Recovery of infectious Ebola virus from cDNA: transcriptional RNA editing of the GP gene controls viral cytotoxicity. Science 291:1965–1969
    [Google Scholar]
  72. Volchkova V. A., Feldmann H., Klenk H.-D., Volchkov V. E. 1998; The nonstructural small glycoprotein of Ebola virus is secreted as an antiparallel-orientated homodimer. Virology 250:408–414
    [Google Scholar]
  73. Volchkova V., Klenk H.-D., Volchkov V. 1999; Δ-peptide is the carboxy-terminal cleavage fragment of the nonstructural small glycoprotein sGP of Ebola virus. Virology 265:64–171
    [Google Scholar]
  74. Watanabe S., Takada A., Watanabe T., Ito H., Kida H., Kawaoka Y. 2000; Functional importance of the coiled-coil of the Ebola virus glycoprotein. Journal of Virology 74:10194–10201
    [Google Scholar]
  75. Weissenhorn W., Dessen A., Harrison S. C., Skehel J. J., Wiley D. C. 1997; Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–430
    [Google Scholar]
  76. Weissenhorn W., Calder L. J., Wharton S. A., Skehel J. J., Wiley D. C. 1998a; The central structural feature of the membrane fusion protein subunit from the Ebola virus glycoprotein is a long triple-stranded coiled coil. Proceedings of the National Academy of Sciences, USA 95:6032–6036
    [Google Scholar]
  77. Weissenhorn W., Carfi A., Lee K. H., Skehel J. J., Wiley D. C. 1998b; Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Molecular and Cellular Biology 2:605–616
    [Google Scholar]
  78. Will C., Mühlberger E., Linder D., Slenczka W., Klenk H.-D., Feldmann H. 1993; Marburg virus gene 4 encodes the virion membrane protein, a type I transmembrane glycoprotein. Journal of Virology 67:1203–1210
    [Google Scholar]
  79. Wilson J. A., Hevey M., Bakken R., Guest S., Bray M., Schmaljohn A. L., Hart M. K. 2000; Epitopes involved in antibody-mediated protection from Ebola virus. Science 287:1664–1666
    [Google Scholar]
  80. Wise R. J., Barr P. J., Wong P. A., Kiefer M., Brake A. J., Kaufman R. J. 1990; Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site. Proceedings of the National Academy of Sciences, USA 87:9378–9382
    [Google Scholar]
  81. Wool-Levis R. J., Bates P. 1998; Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. Journal of Virology 72:3155–3160
    [Google Scholar]
  82. Wool-Levis R. J., Bates P. 1999; Endoproteolytic processing of the Ebola virus envelope glycoprotein: cleavage is not required for function. Journal of Virology 73:1419–1426
    [Google Scholar]
  83. Xu L., Sanchez A., Yang Z. Y., Zaki S. R., Nabel E. G., Nichol S. T., Nabel G. J. 1998; Immunization for Ebola virus infection. Nature Medicine 4:37–42
    [Google Scholar]
  84. Yang Z., Delgado R., Xu L., Todd R. F., Nabel E. G., Sanchez A., Nabel G. J. 1998; Distinct cellular interactions of secreted and transmembrane Ebola virus glycoproteins. Science 279:1034–1036
    [Google Scholar]
  85. Yang Z., Duckers H. J., Sullivan N., Sanchez A., Nabel E. G., Nabel G. J. 2000; Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nature Medicine 6:886–889
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-12-2839
Loading
/content/journal/jgv/10.1099/0022-1317-82-12-2839
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error