1887

Abstract

Human papillomaviruses (HPVs) are aetiological agents of human malignancies, most notably cervical cancers. The life-cycles of HPVs are dependent on epithelial differentiation, and this has impeded many basic studies of HPV biology. The organotypic (raft) culture system supports epithelial differentiation such that infectious virions are synthesized in raft tissues from epithelial cells that replicate extrachromosomal HPV genomes. The CIN-612 9E cell line maintains episomal copies of HPV type 31b (HPV31b), an HPV type associated with cervical cancers. Many previous studies, including our own, have focused on characterizing the later stages of the HPV31b life-cycle in CIN-612 9E raft tissues. In this study, we have used the raft system to generate large numbers of HPV31b viral DNA (vDNA)-containing particles. We found a biologically contained homogenization system to be efficient at virion extraction from raft epithelial tissues. We also determined that vDNA-containing particles could be directly quantified from density-gradient fractions. Using an RT–PCR assay, the presence of newly synthesized, spliced HPV31b transcripts was detected following HPV31b infection of the immortalized HaCaT epithelial cell line. Spliced E6 and E1E4 RNAs were detected using a single round of RT–PCR from cells infected with a dose as low as 1·0 vDNA-containing particle per cell. Spliced E1*I,E2 transcripts were found in cells infected with an HPV31b dose as low as 10 vDNA-containing particles per cell. Infectivity was blocked by HPV31 antiserum, but was not affected by DNase I. This work lays a foundation for a detailed analysis of the early events in HPV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-11-2753
2002-11-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/11/0832753a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-11-2753&mimeType=html&fmt=ahah

References

  1. Atula S., Grenman R., Kujari H., Syrjänen S. 1999; Detection of human papillomavirus (HPV) in laryngeal carcinoma cell lines provides evidence for a heterogeneic cell population. European Journal of Cancer 35:825–832
    [Google Scholar]
  2. Barrera-Oro J. G., Smith K. O., Melnick J. L. 1962; Quantitation of papova virus particles in human warts. Journal of the National Cancer Institute 29:583–595
    [Google Scholar]
  3. Bedell M. A., Hudson J. B., Golub T. R., Turyk M. E., Hosken M., Wilbanks G. D., Laimins L. A. 1991; Amplification of human papillomavirus genomes in vitro is dependent on epithelial differentiation. Journal of Virology 65:2254–2260
    [Google Scholar]
  4. Boukamp P., Petrussevska R. T., Breitkreutz D., Hornung J., Markham A., Fusenig N. E. 1988; Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. Journal of Cell Biology 106:761–771
    [Google Scholar]
  5. Boyle W. F., Riggs J. L., Oshiro J. S., Lennette E. H. 1973; Electron microscopic identification of papovavirus in laryngeal papilloma. Laryngoscope 83:1102–1108
    [Google Scholar]
  6. Butel J. S. 1972; Studies with human papilloma virus modeled after known papovavirus systems. Journal of the National Cancer Institute 48:285–299
    [Google Scholar]
  7. Christensen N. D., Kreider J. W. 1991; Neutralization of CRPV infectivity by monoclonal antibodies that identify conformational epitopes on intact virions. Virus Research 21:169–179
    [Google Scholar]
  8. Christensen N. D., Cladel N. M., Reed C. A. 1995; Postattachment neutralization of papillomaviruses by monoclonal and polyclonal antibodies. Virology 207:136–142
    [Google Scholar]
  9. Christensen N. D., Dillner J., Eklund C., Carter J. J., Wipf G. C., Reed C. A., Cladel N. M., Galloway D. A. 1996; Surface conformational and linear epitopes on HPV-16 and HPV-18 L1 virus-like particles as defined by monoclonal antibodies. Virology 223:174–184
    [Google Scholar]
  10. Crawford L. V., Crawford E. M. 1963; A comparative study of polyoma and papilloma viruses. Virology 21:258–263
    [Google Scholar]
  11. de Villiers E.-M. 1989; Heterogeneity of the human papillomavirus group. Journal of Virology 63:4898–4903
    [Google Scholar]
  12. de Villiers E.-M. 1999; Introduction. Seminars in Cancer Biology 9:337
    [Google Scholar]
  13. Dickens P., Srivastava G., Loke S. L., Larkin S. 1991; Human papillomavirus 6, 11, and 16 in laryngeal papillomas. Journal of Pathology 165:243–246
    [Google Scholar]
  14. Dvoretzky I., Shober R., Chattopadhyay S. K., Lowy D. R. 1980; A quantitative in vitro focus assay for bovine papilloma virus. Virology 103:369–375
    [Google Scholar]
  15. Evander M., Frazer I. H., Payne E., Qi Y. M., Hengst K., McMillan N. A. J. 1997; Identification of the α6 integrin as a candidate receptor for papillomaviruses. Journal of Virology 71:2449–2456
    [Google Scholar]
  16. Favre M., Breitburd F., Croissant O., Orth G. 1975; Structural polypeptides of rabbit, bovine, and human papillomaviruses. Journal of Virology 15:1239–1247
    [Google Scholar]
  17. Frattini M. G., Lim H. B., Laimins L. A. 1996; In vitro synthesis of oncogenic human papillomaviruses requires episomal genomes for differentiation-dependent late expression. Proceedings of the National Academy of Sciences, USA 93:3062–3067
    [Google Scholar]
  18. Gilbert D. M., Cohen S. N. 1987; Bovine papilloma virus plasmids replicate randomly in mouse fibroblasts throughout S phase of the cell cycle. Cell 50:59–68
    [Google Scholar]
  19. Goldsborough M. D., DiSilvestre D., Temple G. F., Lorincz A. T. 1989; Nucleotide sequence of human papillomavirus type 31: a cervical neoplasia-associated virus. Virology 171:306–311
    [Google Scholar]
  20. Hummel M., Hudson J. B., Laimins L. A. 1992; Differentiation-induced and constitutive transcription of human papillomavirus type 31b in cell lines containing viral episomes. Journal of Virology 66:6070–6080
    [Google Scholar]
  21. Hummel M., Lim H. B., Laimins L. A. 1995; Human papillomavirus type 31b late gene expression is regulated through protein kinase C-mediated changes in RNA processing. Journal of Virology 69:3381–3388
    [Google Scholar]
  22. Joyce J. G., Tung J.-S., Przysiecki C. T., Cook J. C., Lehman E. D., Sands J. A., Jansen K. U., Keller P. M. 1999; The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. Journal of Biological Chemistry 274:5810–5822
    [Google Scholar]
  23. Klein C. E., Steinmayer T., Mattes J. M., Kaufmann R., Weber L. 1990; Integrins of normal human epidermis: differential expression, synthesis and molecular structure. British Journal of Dermatology 123:171–178
    [Google Scholar]
  24. Klumpp D. J., Laimins L. A. 1999; Differentiation-induced changes in promoter usage for transcripts encoding the human papillomavirus type 31 replication protein E1. Virology 257:239–246
    [Google Scholar]
  25. Laimins L. A. 1996; Human papillomaviruses target differentiating epithelia for virion production and malignant conversion. Seminars in Virology 7:305–313
    [Google Scholar]
  26. Lancaster W. D., Olson C. 1982; Animal papillomaviruses. Microbiological Reviews 46:191–207
    [Google Scholar]
  27. Lowy D. R., Howley P. M. 2001; Papillomaviruses. In Fields Virology pp 2231–2264 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  28. Lowy D. R., Kirnbauer R., Schiller J. T. 1994; Genital human papillomavirus infection. Proceedings of the National Academy of Sciences, USA 91:2436–2440
    [Google Scholar]
  29. Mayer T. J., Meyers C. 1998; Temporal and spatial expression of the E5a protein during the differentiation-dependent life cycle of human papillomavirus type 31b. Virology 248:208–217
    [Google Scholar]
  30. McCance D. J., Kopan R., Fuchs E., Laimins L. A. 1988; Human papillomavirus type 16 alters human epithelial cell differentiation in vitro . Proceedings of the National Academy of Sciences, USA 85:7169–7173
    [Google Scholar]
  31. Meyers C. 1996; Organotypic (raft) epithelial tissues culture system for the differentiation-dependent replication of papillomavirus. Methods in Cell Science 18:201–210
    [Google Scholar]
  32. Meyers C., Frattini M. G., Hudson J. B., Laimins L. A. 1992; Biosynthesis of human papillomavirus from a continuous cell line on epithelial differentiation. Science 257:971–973
    [Google Scholar]
  33. Meyers C., Mayer T. J., Ozbun M. A. 1997; Synthesis of infectious human papillomavirus type 18 in differentiating epithelium transfected with viral DNA. Journal of Virology 71:7381–7386
    [Google Scholar]
  34. Meyers C., Bromberg-White J. L., Zhang J., Kaupas M. E., Bryan J. T., Lowe R. S., Jansen K. U. 2002; Infectious virions produced from a human papillomavirus type 18/16 genomic DNA chimera. Journal of Virology 76:4723–4733
    [Google Scholar]
  35. Moore C. E., Wiatrak B. J., McClatchey K. D., Koopmann C. F., Thomas G. R., Bradford C. R., Carey T. E. 1999; High-risk human papillomavirus types and squamous cell carcinoma in patients with respiratory papillomas. Otolaryngology-Head Neck Surgery 120:698–705
    [Google Scholar]
  36. Ozbun M. A. 2002; Human papillomavirus type 31b infection of human keratinocytes and the onset of early transcription. Journal of Virology (in Press)
    [Google Scholar]
  37. Ozbun M. A., Meyers C. 1997; Characterization of late gene transcripts expressed during vegetative replication of human papillomavirus type 31b. Journal of Virology 71:5161–5172
    [Google Scholar]
  38. Ozbun M. A., Meyers C. 1998a; Human papillomavirus type 31b E1 and E2 transcript expression correlates with vegetative viral genome amplification. Virology 248:218–230
    [Google Scholar]
  39. Ozbun M. A., Meyers C. 1998b; Temporal usage of multiple promoters during the life cycle of human papillomavirus type 31b. Journal of Virology 72:2715–2722
    [Google Scholar]
  40. Ozbun M. A., Meyers C. 1999a; Human papillomavirus type 31b transcription during the differentiation-dependent viral life cycle. Current Topics in Virology 1:203–217
    [Google Scholar]
  41. Ozbun M. A., Meyers C. 1999b; Two novel promoters in the upstream regulatory region of human papillomavirus type 31b are negatively regulated by epithelial differentiation. Journal of Virology 73:3505–3510
    [Google Scholar]
  42. Pfister H. 1984; Biology and biochemistry of papillomaviruses. Reviews in Physiology, Biochemistry and Pharmacology 99:111–181
    [Google Scholar]
  43. Pray T. R., Laimins L. A. 1995; Differentiation-dependent expression of E1E4 proteins in cell lines maintaining episomes of human papillomavirus type 31b. Virology 206:679–685
    [Google Scholar]
  44. Ravnan J.-B., Gilbert D. M., Ten Hagen K. G., Cohen S. N. 1992; Random-choice replication of extrachromosomal bovine papillomavirus (BPV) molecules in heterogeneous, clonally derived BPV-infected cell lines. Journal of Virology 66:6946–6952
    [Google Scholar]
  45. Roden R. B. S., Greenstone H. L., Kirnbauer R., Booy F. P., Jessie J., Lowy D. R., Schiller J. T. 1996; In vitro generation and type-specific neutralization of a human papillomavirus type 16 virion pseudotype. Journal of Virology 70:5875–5883
    [Google Scholar]
  46. Roden R. B. S., Lowy D. R., Schiller J. T. 1997; Papillomavirus is resistant to desiccation. Journal of Infectious Diseases 176:1076–1079
    [Google Scholar]
  47. Rowson K. E. K., Mahy B. W. J. 1967; Human papova (wart) virus. Bacteriological Reviews 31:110–131
    [Google Scholar]
  48. Sakakura A., Yamamoto Y., Takasaki T., Makimoto K., Nakamura M., Takahashi H. 1996; Recurrent laryngeal papillomatosis developing into laryngeal carcinoma with human papilloma virus (HPV) type 18: a case report. Journal of Laryngology Otology 110:75–77
    [Google Scholar]
  49. Schoop V. M., Mirancea N., Fusenig N. E. 1999; Epidermal organization and differentiation of HaCaT keratinocytes in organotypic coculture with human dermal fibroblasts. Journal of Investigative Dermatology 112:343–353
    [Google Scholar]
  50. Smith L. H., Foster C., Hitchcock M. E., Isseroff R. 1993; In vitro HPV-11 infection of human foreskin. Journal of Investigative Dermatology 101:292–295
    [Google Scholar]
  51. Smith L. H., Foster C., Hitchcock M. E., Leiserowitz G. S., Hall K., Isseroff R., Christensen N. D., Kreider J. W. 1995; Titration of HPV-11 infectivity and antibody neutralization can be measured in vitro . Journal of Investigative Dermatology 105:438–444
    [Google Scholar]
  52. Stoler M. H., Whitbeck A., Wolinsky S. M., Broker T. R., Chow L. T., Howett M. K., Kreider J. W. 1990; Infectious cycle of human papillomavirus type 11 in human foreskin xenografts in nude mice. Journal of Virology 64:3310–3318
    [Google Scholar]
  53. Stubenrauch F., Laimins L. A. 1999; Human papillomavirus life cycle: active and latent phases. Cancer Biology 9:379–386
    [Google Scholar]
  54. Stubenrauch F., Hummel M., Iftner T., Laimins L. A. 2000; The E8E2C protein, a negative regulator of viral transcription and replication, is required for extrachromosomal maintenance of human papillomavirus type 31 in keratinocytes. Journal of Virology 74:1178–1186
    [Google Scholar]
  55. Terhune S. S., Milcarek C., Laimins L. A. 1999; Regulation of human papillomavirus type 31 polyadenylation during the differentiation-dependent life cycle. Journal of Virology 73:7185–7192
    [Google Scholar]
  56. Terhune S. S., Hubert W. G., Thomas J. T., Laimins L. A. 2001; Early polyadenylation signals of human papillomavirus type 31 negatively regulate capsid gene expression. Journal of Virology 75:8147–8157
    [Google Scholar]
  57. Volpers C., Unckell F., Schirmacher P., Streeck R. E., Sapp M. 1995; Binding and internalization of human papillomavirus type 33 virus-like particles by eukaryotic cells. Journal of Virology 69:3258–3264
    [Google Scholar]
  58. Walboomers J. M. M., Jacobs M. V., Manos M. M., Bosch F. X., Kummer J. A., Shah K. V., Snijders P. J. F., Peto J., Meijer C. J. L. M., Muñoz N. 1999; Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. Journal of Pathology 189:12–19
    [Google Scholar]
  59. White W. I., Wilson S. D., Bonnez W., Rose R. C., Koenig S., Suzich J. A. 1998; In vitro infection and type-restricted antibody-mediated neutralization of authentic human papillomavirus type 16. Journal of Virology 72:959–964
    [Google Scholar]
  60. White W. I., Wilson S. D., Palmer-Hill F. J., Woods R. M., Ghim S. J., Hewitt L. A., Goldman D. M., Burke S. J., Jenson A. B., Koenig S., Suzich J. A. 1999; Characterization of a major neutralizing epitope on human papillomavirus type 16 L1. Journal of Virology 73:4882–4889
    [Google Scholar]
  61. Yoon C.-S., Kim K.-D., Park S.-N., Cheong S.-W. 2001; α6 integrin is the main receptor of human papillomavirus type 16 VLP. Biochemical and Biophysical Research Communications 283:668–673
    [Google Scholar]
  62. Zhou J., Gissmann L., Zentgraf H., Müller H., Picken M., Müller M. 1995; Early phase in the infection of cultured cells with papillomavirus virions. Virology 214:167–176
    [Google Scholar]
  63. zur Hausen H. 1996; Papillomavirus infections–a major cause of human cancers. Biochimica et Biophysica Acta 1288:F55–F78
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-11-2753
Loading
/content/journal/jgv/10.1099/0022-1317-83-11-2753
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error