1887

Abstract

A helper-dependent expression system based on transmissible gastroenteritis coronavirus (TGEV) has been developed using a minigenome of 3·9 kb (M39). Expression of the reporter gene β-glucuronidase (GUS) (2–8 μg per 10 cells) and the porcine respiratory and reproductive syndrome virus (PRRSV) ORF5 (1–2 μg per 10 cells) has been shown using a TGEV-derived minigenome. GUS expression levels increased about eightfold with the m.o.i. and were maintained for more than eight passages in cell culture. Nevertheless, instability of the GUS and ORF5 subgenomic mRNAs was observed from passages five and four, respectively. About a quarter of the cells in culture expressing the helper virus also produced the reporter gene as determined by studying GUS mRNA production by hybridization or immunodetection to visualize the protein synthesized. Expression of GUS was detected in the lungs, but not in the gut, of swine immunized with the virus vector. Around a quarter of lung cells showing replication of the helper virus were also positive for the reporter gene. Interestingly, strong humoral immune responses to both GUS and PRRSV ORF5 were induced in swine with this virus vector. The large cloning capacity and the tissue specificity of the TGEV-derived minigenomes suggest that these virus vectors are very promising for vaccine development.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-3-567
2002-03-01
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/3/0830567a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-3-567&mimeType=html&fmt=ahah

References

  1. Agapov E. V., Frolov I., Lindenbach B. D., Pragai B. M., Schlesinger S., Rice C. M. 1998; Noncytopathic Sindbis virus RNA vectors for heterologous gene expression. Proceeding of the National Academy of Sciences, USA 95:12989–12994
    [Google Scholar]
  2. Almazán F., González J. M., Pénzes Z., Izeta A., Calvo E., Plana-Durán J., Enjuanes L. 2000; Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proceeding of the National Academy of Sciences, USA 97:5516–5521
    [Google Scholar]
  3. Alonso S., Izeta A., Sola I., Enjuanes L. 2002; Transcription regulatory sequences and mRNA expression levels in transmissible gastroenteritis coronavirus. Journal of Virology 76:1293–1308
    [Google Scholar]
  4. Ausubel F. M. 1987 Current Protocols in Molecular Biology New York: John Wiley & Sons;
    [Google Scholar]
  5. Ballesteros M. L., Sánchez C. M., Enjuanes L. 1997; Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology 227:378–388
    [Google Scholar]
  6. Boyer J. C., Bebenek K., Kunkel T. A. 1992; Unequal human immunodeficiency virus type 1 reverse transcriptase error rates with RNA and DNA templates. Proceeding of the National Academy of Sciences, USA 89:6919–6923
    [Google Scholar]
  7. Bronstein I., Fortin J. J., Voyta J. C., Juo R.-R., Edwards B., Olenses C. E. M., Lijam N., Kricka L. J. 1994; Chemiluminescent reporter gene assays: sensitive detection of the GUS and SEAP gene products. BioTechniques 17:172–177
    [Google Scholar]
  8. Caul E. O., Egglestone S. I. 1982; Coronavirus in humans. In Virus Infections of the Gastrointestinal Tract pp 179–193 Edited by Tyrrell D. A. J., Kapikian A. Z. New York: Marcel Dekker;
    [Google Scholar]
  9. Correa I., Jiménez G., Suñé C., Bullido M. J., Enjuanes E. 1988; Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Research 10:77–94
    [Google Scholar]
  10. de Mercoyrol L., Corda Y., Job C., Job D. 1992; Accuracy of wheat-germ RNA polymerase II. General enzymatic properties and effect of template conformational transition from right-handed B-DNA to left-handed Z-DNA. European Journal of Biochemistry 206:49–58
    [Google Scholar]
  11. Denison M. R. 1999; The common cold. Rhinoviruses and coronaviruses. In Viral Infections of the Respiratory Tract pp 253–280 Edited by Dolin R., Wright P. F. New York: Marcel Dekker;
    [Google Scholar]
  12. Dubensky T. W., Driver D. A., Polo J. M., Belli B. A., Latham E. M., Ibanez C. E., Chada S., Brumm D., Banks T. A., Mento S. J., Jolly D. J., Chang S. M. W. 1996; Sindbis virus DNA-based expression vectors: utility for in vitro and in vivo gene transfer. Journal of Virology 70:508–519
    [Google Scholar]
  13. Enjuanes L., Van der Zeijst B. A. M. 1995; Molecular basis of transmissible gastroenteritis coronavirus epidemiology. In In The Coronaviridae pp 337–376 Edited by Siddell S. G. New York: Plenum Press;
    [Google Scholar]
  14. Enjuanes L., Brian D., Cavanagh D., Holmes K., Lai M. M. C., Laude H., Masters P., Rottier P., Siddell S. G., Spaan W. J. M., Taguchi F., Talbot P. 2000a; Coronaviridae . In Virus Taxonomy. Classification and Nomenclature of Viruses pp 835–849 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carsten E. B., Estes M. K., Lemon S. M., McGeoch D. J., Maniloff J., Mayo M. A., Pringle C. R., Wickner R. B. New York: Academic Press;
    [Google Scholar]
  15. Enjuanes L., Spaan W., Snijder E., Cavanagh D. 2000b; Nidovirales. In In Virus taxonomy. Classification and Nomenclature of Viruses pp 827–834 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carsten E. B., Estes M. K., Lemon S. M., McGeoch D. J., Maniloff J., Mayo M. A., Pringle C. R., Wickner R. B. New York: Academic Press;
    [Google Scholar]
  16. Enjuanes L., Sola I., Almazán F., Ortego J., Izeta A., González J. M., Alonso S., Sánchez-Morgado J. M., Escors D., Calvo E., Riquelme C., Sánchez C. M. 2001; Coronavirus derived expression systems. Journal of Biotechnology 88:183–204
    [Google Scholar]
  17. Harlow E., Lane D. 1988 Antibodies: A Laboratory Manual pp 726 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Izeta A., Smerdou C., Alonso S., Penzes Z., Méndez A., Plana-Durán J., Enjuanes L. 1999; Replication and packaging of transmissible gastroenteritis coronavirus-derived synthetic minigenomes. Journal of Virology 73:1535–1545
    [Google Scholar]
  19. Jefferson R. A., Burgess S. M., Hirsh D. 1986; β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proceeding of the National Academy of Sciences, USA 83:8447–8451
    [Google Scholar]
  20. Jiménez G., Correa I., Melgosa M. P., Bullido M. J., Enjuanes L. 1986; Critical epitopes in transmissible gastroenteritis virus neutralization. Journal of Virology 60:131–139
    [Google Scholar]
  21. Kozak M. 1991a; An analysis of vertebrate mRNA sequences: intimations of translational control. Journal of Cell Biology 115:887–903
    [Google Scholar]
  22. Kozak M. 1991b; Structural features in eukaryotic mRNAs that modulate the initiation of translation. Journal of Biological Chemistry 266:19867–19870
    [Google Scholar]
  23. Krishnan R., Chang R. Y., Brian D. A. 1996; Tandem placement of a coronavirus promoter results in enhanced mRNA synthesis from the downstream-most initiation site. Virology 218:400–405
    [Google Scholar]
  24. Kuo L., Godeke G.-J., Raamsman M. J. B., Masters P. S., Rottier P. J. M. 2000; Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. Journal of Virology 74:1393–1406
    [Google Scholar]
  25. Lai M. M. C., Cavanagh D. 1997; The molecular biology of coronaviruses. Advances in Virus Research 48:1–100
    [Google Scholar]
  26. Leparc-Goffart I., Hingley S. T., Chua M. M., Phillips J., Lavi E., Weiss S. R. 1998; Targeted recombination within the spike gene of murine coronavirus mouse hepatitis virus A59: Q159 is a determinant of hepatotropism. Journal of Virology 72:9628–9636
    [Google Scholar]
  27. Liao C. L., Zhang X., Lai M. M. C. 1995; Coronavirus defective-interfering RNA as an expression vector: the generation of a pseudorecombinant mouse hepatitis virus expressing hemagglutinin–esterase. Virology 208:319–327
    [Google Scholar]
  28. Lin Y. J., Lai M. M. C. 1993; Deletion mapping of a mouse hepatitis virus defective interfering RNA reveals the requirement of an internal and discontinuous sequence for replication. Journal of Virology 67:6110–6118
    [Google Scholar]
  29. McClurkin A. W., Norman J. O. 1966; Studies on transmissible gastroenteritis of swine. II. Selected characteristics of a cytopathogenic virus common to five isolates from transmissible gastroenteritis. Canadian Journal of Comparative Medicine and Veterinary Science 30:190–198
    [Google Scholar]
  30. Masters P. S. 1999; Reverse genetics of the largest RNA viruses. Advances in Virus Research 53:245–264
    [Google Scholar]
  31. Meulenberg J. J. M., den Besten A. P., de Kluyver E. P., Moormann R. J. M., Schaaper W. M. M., Wensvoort G. 1995; Characterization of proteins encoded by ORFs 2 to 7 of Lelystad virus. Virology 206:155–163
    [Google Scholar]
  32. Meulenberg J. J. M., Bos-de-Ruijter J. N. A., Wenswoort G., Moormann R. J. M. 1998; An infectious cDNA clone of porcine reproductive and respiratory syndrome virus. Advances in Experimental Medicine and Biology 440:199–206
    [Google Scholar]
  33. Penzes Z., González J. M., Izeta A., Muntion M., Enjuanes L. 1998; Progress towards the construction of a transmissible gastroenteritis coronavirus self-replicating RNA using a two-layer expression system. Advances in Experimental Medicine and Biology 440:319–327
    [Google Scholar]
  34. Penzes Z., González J. M., Calvo E., Izeta A., Smerdou C., Mendez A., Sánchez C. M., Sola I., Almazán F., Enjuanes L. 2001; Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the Purdue virus cluster. Virus Genes 23:105–118
    [Google Scholar]
  35. Pirzadeh B., Dea S. 1998; Immune response in pigs vaccinated with plasmid DNA encoding ORF5 of porcine reproductive and respiratory syndrome virus. Journal of General Virology 79:989–999
    [Google Scholar]
  36. Plana-Durán J., Vayreda M., Vilarrasa M., Bastons J., Rosell M., Martínez R., SanGabriel M. A., Pujols A., Badiola J., Ramos J. L., Domingo M. 1992; Porcine epidemic abortion and respiratory syndrome (mystery swine disease). Isolation in Spain of the causative agent and experimental reproduction of the disease. Veterinary Microbiology 33:203–211
    [Google Scholar]
  37. Plana-Durán J., Bastons M., Urniza A., Vayreda M., Vila X., Mañe H. 1997a; Efficacy of an inactivated vaccine for prevention of reproductive failure induced by porcine reproductive and respiratory syndrome virus. Veterinary Microbiology 55:361–370
    [Google Scholar]
  38. Plana-Durán J., Climent I., Sarraseca J., Urniza A., Cortes E., Vela C., Casal J. I. 1997b; Baculovirus expression of proteins of porcine reproductive and respiratory syndrome virus strain Olot/91. Involvement of ORF3 and ORF5 protein in protection. Virus Genes 14:19–29
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Sánchez C. M., Jiménez G., Laviada M. D., Correa I., Suñé C., Bullido M. J., Gebauer F., Smerdou C., Callebaut P., Escribano J. M., Enjuanes L. 1990; Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology 174:410–417
    [Google Scholar]
  41. Sánchez C. M., Gebauer F., Suñé C., Méndez A., Dopazo J., Enjuanes L. 1992; Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology 190:92–105
    [Google Scholar]
  42. Sánchez C. M., Izeta A., Sánchez-Morgado J. M., Alonso S., Sola I., Balasch M., Plana-Durán J., Enjuanes L. 1999; Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. Journal of Virology 73:7607–7618
    [Google Scholar]
  43. Schlaman H. R. M., Risseeuw E., Franke-van Dijk M. E. I., Hooykaas P. J. J. 1994; Nucleotide sequence corrections of the uidA open reading frame encoding β-glucuronidase. Gene 138:259–260
    [Google Scholar]
  44. Siddell S. G. 1995; The Coronaviridae . In The Viruses pp 418 Edited by Fraenkel-Conrat H., Wagner R. R. New York: Plenum Press;
    [Google Scholar]
  45. Sooknanan R., Howes M., Read L., Malek L. T. 1994; Fidelity of nucleic acid amplification with avian myeloblastosis virus reverse transcriptase and T7 RNA polymerase. BioTechniques 17:1077–1085
    [Google Scholar]
  46. Stirrups K., Shaw K., Evans S., Dalton K., Casais R., Cavanagh D., Britton P. 2000; Expression of reporter genes from the defective RNA CD-61 of the coronavirus infectious bronchitis virus. Journal of General Virology 81:1687–1698
    [Google Scholar]
  47. Thiel V., Siddell S. G., Herold J. 1998; Replication and transcription of HCV 229E replicons. Advances in Experimental Medicine and Biology 440:109–114
    [Google Scholar]
  48. Thiel V., Herold J., Schelle B., Siddell S. G. 2001; Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. Journal of General Virology 82:1273–1281
    [Google Scholar]
  49. Thomas M. J., Platas A. A., Hawley D. K. 1998; Transcriptional fidelity and proofreading by RNA polymerase II. Cell 93:627–637
    [Google Scholar]
  50. Torres J. M., Sánchez C. M., Suñé C., Smerdou C., Prevec L., Graham F., Enjuanes L. 1995; Induction of antibodies protecting against transmissible gastroenteritis coronavirus (TGEV) by recombinant adenovirus expressing TGEV spike protein. Virology 213:503–516
    [Google Scholar]
  51. Ward C. D., Stokes M. A. M., Flanagan J. B. 1988; Direct measurement of the poliovirus RNA polymerase error frequency in vitro. Journal of Virology 62:558–562
    [Google Scholar]
  52. Yount B., Curtis K. M., Baric R. S. 2000; Strategy for systematic assembly of large RNA and DNA genomes: the transmissible gastroenteritis virus model. Journal of Virology 74:10600–10611
    [Google Scholar]
  53. Zhang X., Hinton D. R., Cua D. J., Stohlman S. A., Lai M. M. C. 1997; Expression of interferon-γ by a coronavirus defective-interfering RNA vector and its effect on viral replication, spread, and pathogenicity. Virology 233:327–338
    [Google Scholar]
  54. Zurbriggen A., Schmid I., Graber H. U., Vandevelde M. 1998; Oligodendroglial pathology in canine distemper. Acta Neuropathologica 95:71–77
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-3-567
Loading
/content/journal/jgv/10.1099/0022-1317-83-3-567
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error