1887

Abstract

We compared the extent of positive selection acting on acute and persistent strains of measles virus (MV). Far stronger positive selection was found in the fusion (F) and haemagglutinin (H) genes from subacute sclerosing panencephalitis (SSPE) compared to acute MV cases. Most of the positively selected sites identified in these surface glycoprotein genes from SSPE cases correspond to structural, functional or antigenic areas, and could not be explained by the effects of cell passaging. The correlations between selected sites and functional studies of MV are discussed in detail with reference to the maintenance of persistent infection. No positive selection was found in the matrix (M) gene from acute cases of MV and the effects of including hypermutated SSPE M gene sequences in phylogenetic inference were also explored. Finally, using H gene data, we estimated the rate of molecular evolution for SSPE strains as 3·4×10 substitutions/site/year, which is similar to previous estimates obtained for acute strains.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-6-1419
2002-06-01
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/6/0831419a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-6-1419&mimeType=html&fmt=ahah

References

  1. Alkhatib G., Shen S. H., Briedis D., Richardson C., Massie B., Weinberg R., Smith D., Taylor J., Paoletti E., Roder J. 1994; Functional analysis of N-linked glycosylation mutants of the measles virus fusion protein synthesized by recombinant vaccinia virus vectors. Journal of Virology 68:1522–1531
    [Google Scholar]
  2. Atabani S. F., Obeid O. E., Chargelegue D., Aaby P., Whittle H., Steward M. W. 1997; Identification of an immunodominant neutralizing and protective epitope from measles virus fusion protein by using human sera from acute infection. Journal of Virology 71:7240–7245
    [Google Scholar]
  3. Ayata M., Kimoto T., Hayashi K., Seto T., Murata R., Ogura H. 1998; Nucleotide sequences of the matrix protein gene of subacute sclerosing panencephalitis viruses compared with local contemporary isolates from patients with acute measles. Virus Research 54:107–115
    [Google Scholar]
  4. Baczko K., Lampe J., Liebert U. G., Brinckmann U., ter Meulen V., Pardowitz I., Budka H., Cosby S. L., Isserte S., Rima B. K. 1993; Clonal expansion of hypermutated measles virus in a SSPE brain. Virology 197:188–195
    [Google Scholar]
  5. Billeter M. A., Baczko K., Schmid A., ter Meulen V. 1984; Cloning of DNA corresponding to four different measles virus genomic regions. Virology 132:147–159
    [Google Scholar]
  6. Billeter M. A., Cattaneo R., Spielhofer P., Kaelin K., Huber M., Schmid A., Baczko K., ter Meulen V. 1994; Generation and properties of measles virus mutations typically associated with subacute sclerosing panencephalitis. Annals of the New York Academy of Sciences 724:367–377
    [Google Scholar]
  7. Boom R., Sol C. J. A., Salimans M. M. M., Jansen C. L., Wertheim van Dillen P. M. E., van der Noordaa J. 1990; Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology 28:495–503
    [Google Scholar]
  8. Buckland R., Gerald C., Barker R., Wild T. F. 1987; Fusion glycoprotein of measles virus – nucleotide sequence of the gene and comparison with other paramyxoviruses. Journal of General Virology 68:1695–1703
    [Google Scholar]
  9. Buckland R., Cheynet V., Beauverger P., Wild F. 1990; Cloning of the matrix gene of measles virus (Hallé strain). Nucleic Acids Research 18:5283
    [Google Scholar]
  10. Buckland R., Malvoisin E., Beauverger P., Wild F. 1992; A leucine zipper structure present in the measles virus fusion protein is not required for its tetramerization but is essential for fusion. Journal of General Virology 73:1703–1707
    [Google Scholar]
  11. Cattaneo R., Rose J. K. 1993; Cell fusion by the envelope glycoproteins of persistent measles viruses which caused lethal human brain disease. Journal of Virology 67:1493–1502
    [Google Scholar]
  12. Cattaneo R., Schmid A., Eschle D., Baczko K., ter Meulen V., Billeter M. A. 1988; Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 55:255–265
    [Google Scholar]
  13. Cattaneo R., Schmid A., Spielhofer P., Kaelin K., Baczko K., ter Meulen V., Pardowitz J., Flanagan S., Rima B. K., Udem S. A., Billeter M. A. 1989; Mutated and hypermutated genes of persistent measles viruses which caused lethal human brain diseases. Virology 173:415–425
    [Google Scholar]
  14. Chambers P., Pringle C. R., Easton A. J. 1990; Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. Journal of General Virology 71:3075–3080
    [Google Scholar]
  15. Curran M. D., Rima B. K. 1988; Nucleotide sequence of the gene encoding the matrix protein of a recent measles virus isolate. Journal of General Virology 69:2407–2411
    [Google Scholar]
  16. Enami M., Sato T. A., Sugiura A. 1989; Matrix protein of cell-associated subacute sclerosing panencephalitis viruses. Journal of General Virology 70:2191–2196
    [Google Scholar]
  17. Fayolle J. L., Verrier B., Buckland R., Wild T. F. 1999; Characterization of a natural mutation in an antigenic site on the fusion protein of measles virus that is involved in neutralization. Journal of Virology 73:787–790
    [Google Scholar]
  18. Furukawa K., Ayata M., Kimura M., Seto T., Matsunaga I., Murata R., Yamano T., Ogura H. 2001; Hemadsorption expressed by cloned H genes from subacute sclerosing panencephalitis (SSPE) viruses and their possible progenitor measles viruses isolated in Osaka, Japan. Microbiology and Immunology 45:59–68
    [Google Scholar]
  19. Gerald C., Buckland R., Barker R., Freeman G., Wild T. F. 1986; Measles virus haemagglutinin gene: cloning, complete nucleotide sequence analysis and expression in COS cells. Journal of General Virology 67:2695–2703
    [Google Scholar]
  20. Gething M. J., McCammon K., Sambrook J. 1986; Expression of wild-type and mutant forms of influenza haemagglutinin – the role of folding in intracellular transport. Cell 46:939–950
    [Google Scholar]
  21. Hu A. Z., Sheshberadaran H., Norrby E., Kovamees J. 1993; Molecular characterization of epitopes on the measles virus haemagglutinin protein. Virology 192:351–354
    [Google Scholar]
  22. Hu A. H., Cattaneo R., Schwartz S., Norrby E. 1994; Role of N -linked oligosaccharide chains in the processing and antigenicity of measles virus haemagglutinin protein. Journal of General Virology 75:1043–1052
    [Google Scholar]
  23. Hu A. Z., Cathomen T., Cattaneo R., Norrby E. 1995; Influence of N -linked oligosaccharide chains on the processing, cell surface expression and function of the measles virus fusion protein. Journal of General Virology 76:705–710
    [Google Scholar]
  24. Jenkins G. M., Rambaut A., Pybus O. G., Holmes E. C. 2002; Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. Journal of Molecular Evolution 54:152–161
    [Google Scholar]
  25. Jin L., Richards A., Brown D. W. G. 1996; Development of a dual target-PCR for detection and characterization of measles virus in clinical specimens. Molecular and Cellular Probes 10:191–200
    [Google Scholar]
  26. Jin L., Knowles W. A., Rota P. A., Bellini W. J., Brown D. W. G. 1998; Genetic and antigenic characterisation of the haemagglutinin protein of measles virus strains recently circulating in the UK. Virus Research 55:107–113
    [Google Scholar]
  27. Johnston I. C. D., ter Meulen V., Schneider-Schaulies J., Schneider-Schaulies S. 1999; A recombinant measles vaccine virus expressing wild-type glycoproteins: consequences for viral spread and cell tropism. Journal of Virology 73:6903–6915
    [Google Scholar]
  28. Komase K., Haga T., Yoshikawa Y., Sato T. A., Yamanouchi K. 1990a; Molecular analysis of structural protein genes of the Yamagata-1 strain of defective subacute sclerosing panencephalitis virus. III. Nucleotide sequence of the haemagglutinin gene. Virus Genes 4:163–172
    [Google Scholar]
  29. Komase K., Haga T., Yoshikawa Y., Sato T. A., Yamanouchi K. 1990b; Molecular analysis of structural protein genes of the Yamagata-1 strain of defective subacute sclerosing panencephalitis virus. IV. Nucleotide sequence of the fusion gene. Virus Genes 4:173–181
    [Google Scholar]
  30. Kreis T. E., Lodish H. F. 1986; Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. Cell 46:929–937
    [Google Scholar]
  31. Lamb R. A. 1993; Paramyxovirus fusion: a hypothesis for changes. Virology 197:1–11
    [Google Scholar]
  32. Lamb A. L., Kolakofsky D. 1996; Paramyxoviridae : the viruses and their replication. In Fields Virology pp 577–604 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  33. Langedijk J. P. M., Daus F. J., van Oirschot J. T. 1997; Sequence and structure alignment of Paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus haemagglutinin. Journal of Virology 71:6155–6167
    [Google Scholar]
  34. Liebert U. G. 1997; Measles virus infections of the central nervous system. Intervirology 40:176–184
    [Google Scholar]
  35. Manchester M., Eto D. S., Valsamakis A., Liton P. B., Fernandez-Munoz R., Rota P. A., Bellini W. J., Forthal D. N., Oldstone M. B. A. 2000; Clinical isolates of measles virus use CD46 as a cellular receptor. Journal of Virology 74:3967–3974
    [Google Scholar]
  36. Miller C., Farrington C. P., Harbert K. 1992; The epidemiology of subacute sclerosing panencephalitis in England and Wales 1970–1989. International Journal of Epidemiology 21:998–1006
    [Google Scholar]
  37. Muller C. P., Handtmann D., Brons N. H. C., Weinmann M., Wiesmuller K. H., Spahn G., Wiesneth M., Schneider F., Jung G. 1993; Analysis of antibody-response to the measles virus using synthetic peptides of the fusion protein – evidence of nonrandom pairing of T-cell and B-cell epitopes. Virus Research 30:271–280
    [Google Scholar]
  38. Muller C. P., Bunder R., Mayser H., Ammon S., Weinmann M., Brons N. H. C., Schneider F., Jung G., Wiesmuller K. H. 1995; Intramolecular immunodominance and intermolecular selection of H2(D)-restricted peptides define the same immunodominant region of the measles virus fusion protein. Molecular Immunology 32:37–47
    [Google Scholar]
  39. Muller C. P., Ammerlaan W., Fleckenstein B., Krauss S., Kalbacher H., Schneider F., Jung G., Wiesmuller K. H. 1996; Activation of T cells by the ragged tail of MHC class II-presented peptides of the measles virus fusion protein. International Immunology 8:445–456
    [Google Scholar]
  40. Nielsen R., Yang Z. 1998; Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936
    [Google Scholar]
  41. Ohuchi M., Ohuchi R., Mifune K., Ishihara T., Ogawa T. 1987; Characterization of the measles virus isolated from the brain of a patient with immunosuppressive measles encephalitis. Journal of Infectious Diseases 156:436–441
    [Google Scholar]
  42. Partidos C. D., Steward M. W. 1990; Prediction and identification of a T-cell epitope in the fusion protein of measles virus immunodominant in mice and humans. Journal of General Virology 71:2099–2105
    [Google Scholar]
  43. Rambaut A. 2000; Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16:395–399
    [Google Scholar]
  44. Rima B. K., Earle J. A. P., Baczko K., ter Meulen V., Liebert U. G., Carstens C., Carabana J., Caballero M., Celma M. L., Fernandez-Munoz R. 1997; Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. Journal of General Virology 78:97–106
    [Google Scholar]
  45. Roos R. P., Graves M. C., Wollmann R. L., Chilcote R. R., Nixon J. 1981; Immunological and virologic studies of measles inclusion body encephalitis in an immunosuppressed host: the relationship to subacute sclerosing panencephalitis. Neurology 31:1263–1270
    [Google Scholar]
  46. Rota J. S., Hummel K. B., Rota P. A., Bellini W. J. 1992; Genetic variability of the glycoprotein genes of current wild-type measles isolates. Virology 188:135–142
    [Google Scholar]
  47. Rota P., Bloom A., Vanchiere J., Bellini W. 1994; Evolution of the nucleoprotein and matrix genes of wild-type strains of measles virus isolated from recent epidemics. Virology 198:724–730
    [Google Scholar]
  48. Scheid A., Choppin P. 1974; Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity of proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology 57:475–490
    [Google Scholar]
  49. Schneider-Schaulies S., Liebert U. G. 1991; Pathogenic aspects of persistent measles virus infections in brain tissue. Seminars in the Neurosciences 3:149–155
    [Google Scholar]
  50. Schneider-Schaulies S., Schneider-Schaulies J., Dunster L. M., ter Meulen V. 1995; Measles virus gene expression in neural cells. In Measles Virus pp 101–116 Edited by ter Meulen V., Billeter M. A. Berlin: Springer;
    [Google Scholar]
  51. Spruce A. E., Iwata A., Almers W. 1991; The first milliseconds of the pore formed by a fusogenic viral envelope protein during membrane fusion. Proceedings of the National Academy of Sciences, USA 88:3623–3627
    [Google Scholar]
  52. Swofford D. L. 2000; Phylogenetic analysis using parsimony (*and other methods). Version 4:0b6 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  53. Takeda M., Kato A., Kobune F., Sakata H., Li Y., Shioda T., Sakai Y., Asakawa M., Nagai Y. 1998; Measles virus attenuation associated with transcriptional impediment and a few amino acid changes in the polymerase and accessory proteins. Journal of Virology 72:8690–8696
    [Google Scholar]
  54. Takeuchi K., Miyajima N., Kobune F., Tashiro M. 2000; Comparative nucleotide sequence analyses of the entire genomes of B95a cell-isolated and Vero cell-isolated measles viruses from the same patient. Virus Genes 20:253–257
    [Google Scholar]
  55. Tatsuo H., Ono N., Tanaka K., Yanagi Y. 2000; SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897
    [Google Scholar]
  56. ter Meulen V., Stephenson J. R., Kreth H. W. 1983; Subacute sclerosing panencephalitis. Comprehensive Virology 18:105–159
    [Google Scholar]
  57. van Binnendijk R. S., Versteeg-van Oosten J. P. M., Poelen M. C. M., Brugghe H. F., Hoogerhout P., Osterhaus A. D. M. E., Uytdehaag F. G. C. M. 1993; Human HLA class I-restricted and HLA class II-restricted cloned cytotoxic T-lymphocytes identify a cluster of epitopes on the measles virus fusion protein. Journal of Virology 67:2276–2284
    [Google Scholar]
  58. WHO 2001; Nomenclature for describing the genetic characteristics of wild-type measles virus (update). WHO Weekly Epidemiological Report 76:241–247
    [Google Scholar]
  59. Wiesmüller K. H., Spahn G., Handtmann D., Schneider F., Jung G., Muller C. P. 1992; Heterogeneity of linear B-cell epitopes of the measles virus fusion protein reacting with late convalescent sera. Journal of General Virology 73:2211–2216
    [Google Scholar]
  60. Woelk C. H., Holmes E. C. 2001; Variable immune-driven natural selection in the attachment (G) glycoprotein of respiratory syncytial virus (RSV). Journal of Molecular Evolution 52:182–192
    [Google Scholar]
  61. Woelk C. H., Jin L., Holmes E. C., Brown D. W. G. 2001; Immune and artificial selection in the haemagglutinin (H) glycoprotein of measles virus. Journal of General Virology 82:2463–2474
    [Google Scholar]
  62. Wong T. C., Ayata M., Hirano A., Yoshikawa Y., Tsuruoka H., Yamanouchi K. 1989; Generalized and localized biased hypermutation affecting the matrix gene of a measles virus strain that causes subacute sclerosing panencephalitis. Journal of Virology 63:5464–5468
    [Google Scholar]
  63. Wong T. C., Ayata M., Ueda S., Hirano A. 1991; Role of biased hypermutation in evolution of subacute sclerosing panencephalitis virus from progenitor acute measles virus. Journal of Virology 65:2191–2199
    [Google Scholar]
  64. Yang Z. 1997; PAML: a program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences 13:555–556
    [Google Scholar]
  65. Yang Z. 2000; Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus A. Journal of Molecular Evolution 51:423–432
    [Google Scholar]
  66. Yang Z., Bielawski J. P. 2000; Statistical methods for detecting molecular adaptation. Trends in Ecology & Evolution 15:496–503
    [Google Scholar]
  67. Yang Z., Nielsen R., Goldman N., Pedersen A. M. K. 2000; Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-6-1419
Loading
/content/journal/jgv/10.1099/0022-1317-83-6-1419
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error