1887

Abstract

The division of viruses into orders, families, genera and species provides a classification framework that seeks to organize and make sense of the diversity of viruses infecting animals, plants and bacteria. Classifications are based on similarities in genome structure and organization, the presence of homologous genes and sequence motifs and at lower levels such as species, host range, nucleotide and antigenic relatedness and epidemiology. Classification below the level of family must also be consistent with phylogeny and virus evolutionary histories. Recently developed methods such as PASC, DEMaRC and NVR offer alternative strategies for genus and species assignments that are based purely on degrees of divergence between genome sequences. They offer the possibility of automating classification of the vast number of novel virus sequences being generated by next-generation metagenomic sequencing. However, distance-based methods struggle to deal with the complex evolutionary history of virus genomes that are shuffled by recombination and reassortment, and where taxonomic lineages evolve at different rates. In biological terms, classifications based on sequence distances alone are also arbitrary whereas the current system of virus taxonomy is of utility precisely because it is primarily based upon phenotypic characteristics. However, a separate system is clearly needed by which virus variants that lack biological information might be incorporated into the ICTV classification even if based solely on sequence relationships to existing taxa. For these, simplified taxonomic proposals and naming conventions represent a practical way to expand the existing virus classification and catalogue our rapidly increasing knowledge of virus diversity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000016
2015-06-01
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/6/1193.html?itemId=/content/journal/jgv/10.1099/jgv.0.000016&mimeType=html&fmt=ahah

References

  1. Adams I. P., Skelton A., Macarthur R., Hodges T., Hinds H., Flint L., Nath P. D., Boonham N., Fox A. 2014; Carrot yellow leaf virus is associated with carrot internal necrosis. PLoS ONE 9:e109125 [View Article][PubMed]
    [Google Scholar]
  2. Bao Y., Chetvernin V., Tatusova T. 2012; PAirwise Sequence Comparison (PASC) and its application in the classification of filoviruses. Viruses 4:1318–1327 [View Article][PubMed]
    [Google Scholar]
  3. Bao Y., Chetvernin V., Tatusova T. 2014; Improvements to pairwise sequence comparison (PASC): a genome-based web tool for virus classification. Arch Virol 159:3293–3304 [View Article][PubMed]
    [Google Scholar]
  4. Be N. A., Thissen J. B., Fofanov V. Y., Allen J. E., Rojas M., Golovko G., Fofanov Y., Koshinsky H., Jaing C. J. 2014; Metagenomic Analysis of the Airborne Environment in Urban Spaces. Microb Ecol [Epub ahead of print] [View Article][PubMed]
    [Google Scholar]
  5. Biagini P. 2009; Classification of TTV and related viruses (anelloviruses). Curr Top Microbiol Immunol 331:21–33[PubMed]
    [Google Scholar]
  6. Cibulski S. P., Teixeira T. F., de Sales Lima F. E., do Santos H. F., Franco A. C., Roehe P. M. 2014; A novel Anelloviridae species detected in Tadarida brasiliensis bats: first sequence of a chiropteran Anellovirus . Genome Announc 2:e01028–e14 [View Article][PubMed]
    [Google Scholar]
  7. Cotmore S. F., Agbandje-McKenna M., Chiorini J. A., Mukha D. V., Pintel D. J., Qiu J., Soderlund-Venermo M., Tattersall P., Tijssen P. et al. 2014; The family Parvoviridae . Arch Virol 159:1239–1247 [View Article][PubMed]
    [Google Scholar]
  8. Cotten M., Oude Munnink B., Canuti M., Deijs M., Watson S. J., Kellam P., van der Hoek L. 2014; Full genome virus detection in fecal samples using sensitive nucleic acid preparation, deep sequencing, and a novel iterative sequence classification algorithm. PLoS ONE 9:e93269 [View Article][PubMed]
    [Google Scholar]
  9. Culley A. I., Mueller J. A., Belcaid M., Wood-Charlson E. M., Poisson G., Steward G. F. 2014; The characterization of RNA viruses in tropical seawater using targeted PCR and metagenomics. MBio 5:e01210–e14 [View Article][PubMed]
    [Google Scholar]
  10. Doolittle R. F., Feng D. F. 1992; Tracing the origin of retroviruses. Curr Top Microbiol Immunol 176:195–211[PubMed]
    [Google Scholar]
  11. Drummond A. J., Ho S. Y., Phillips M. J., Rambaut A. 2006; Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88 [View Article][PubMed]
    [Google Scholar]
  12. Duffy S., Shackelton L. A., Holmes E. C. 2008; Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9:267–276 [View Article][PubMed]
    [Google Scholar]
  13. Edgar R. C. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  14. Feng H., Shuda M., Chang Y., Moore P. S. 2008; Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:1096–1100 [View Article][PubMed]
    [Google Scholar]
  15. Forterre P. 2010; Giant viruses: conflicts in revisiting the virus concept. Intervirology 53:362–378 [View Article][PubMed]
    [Google Scholar]
  16. Gilbert W. 1986; Origin of life: the RNA world. Nature 319:618 [View Article]
    [Google Scholar]
  17. Gould E. A., Solomon T. 2008; Pathogenic flaviviruses. Lancet 371:500–509 [View Article][PubMed]
    [Google Scholar]
  18. Grard G., Fair J. N., Lee D., Slikas E., Steffen I., Muyembe J. J., Sittler T., Veeraraghavan N., Ruby J. G. et al. 2012; A novel rhabdovirus associated with acute hemorrhagic fever in central Africa. PLoS Pathog 8:e1002924 [View Article][PubMed]
    [Google Scholar]
  19. Hasegawa M., Kishino H. 1989; Heterogeneity of tempo and mode of mitochondrial DNA evolution among mammalian orders. Jpn J Genet 64:243–258 [View Article][PubMed]
    [Google Scholar]
  20. Hewson I., Button J. B., Gudenkauf B. M., Miner B., Newton A. L., Gaydos J. K., Wynne J., Groves C. L., Hendler G. et al. 2014; Densovirus associated with sea-star wasting disease and mass mortality. Proc Natl Acad Sci U S A 111:17278–17283 [View Article][PubMed]
    [Google Scholar]
  21. Hicks A. L., Duffy S. 2014; Cell tropism predicts long-term nucleotide substitution rates of mammalian RNA viruses. PLoS Pathog 10:e1003838 [View Article][PubMed]
    [Google Scholar]
  22. Huang H. H., Yu C., Zheng H., Hernandez T., Yau S. C., He R. L., Yang J., Yau S. S. 2014; Global comparison of multiple-segmented viruses in 12-dimensional genome space. Mol Phylogenet Evol 81:29–36 [View Article][PubMed]
    [Google Scholar]
  23. Illangasekare M., Sanchez G., Nickles T., Yarus M. 1995; Aminoacyl-RNA synthesis catalyzed by an RNA. Science 267:643–647 [View Article][PubMed]
    [Google Scholar]
  24. Jenkins G. M., Rambaut A., Pybus O. G., Holmes E. C. 2002; Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol 54:156–165 [View Article][PubMed]
    [Google Scholar]
  25. Knowles N. J., Hovi T., Hyypia T., King A. M. Q., Lindberg A. M., Pallansch M. A., Palmenberg A. C., Simmonds P., Skern T. et al. 2010; Picornaviridae. Ninth Report of the International Committee on Taxonomy of Viruses. In Virus Taxonomy: Classification and Nomenclature of Viruses pp. 855–880 Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. San Diego, CA: Elsevier;
    [Google Scholar]
  26. Koonin E. V., Dolja V. V. 2014; Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol Mol Biol Rev 78:278–303 [View Article][PubMed]
    [Google Scholar]
  27. Kristensen D. M., Mushegian A. R., Dolja V. V., Koonin E. V. 2010; New dimensions of the virus world discovered through metagenomics. Trends Microbiol 18:11–19 [View Article][PubMed]
    [Google Scholar]
  28. Kuhn J. H., Becker S., Ebihara H., Geisbert T. W., Johnson K. M., Kawaoka Y., Lipkin W. I., Negredo A. I., Netesov S. V. et al. 2010; Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Arch Virol 155:2083–2103 [View Article][PubMed]
    [Google Scholar]
  29. Labonté J. M., Suttle C. A. 2013; Previously unknown and highly divergent ssDNA viruses populate the oceans. ISME J 7:2169–2177 [View Article][PubMed]
    [Google Scholar]
  30. Lauber C., Gorbalenya A. E. 2012a). Partitioning the genetic diversity of a virus family: approach and evaluation through a case study of picornaviruses. J Virol 86:3890–3904 [View Article][PubMed]
    [Google Scholar]
  31. Lauber C., Gorbalenya A. E. 2012b). Toward genetics-based virus taxonomy: comparative analysis of a genetics-based classification and the taxonomy of picornaviruses. J Virol 86:3905–3915 [View Article][PubMed]
    [Google Scholar]
  32. Lauber C., Gorbalenya A. E. 2012c). Genetics-based classification of filoviruses calls for expanded sampling of genomic sequences. Viruses 4:1425–1437 [View Article][PubMed]
    [Google Scholar]
  33. Le Gall O., Christian P., Fauquet C. M., King A. M., Knowles N. J., Nakashima N., Stanway G., Gorbalenya A. E. 2008; Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T  =  3 virion architecture. Arch Virol 153:715–727 [View Article][PubMed]
    [Google Scholar]
  34. Lukashev A. N. 2005; Role of recombination in evolution of enteroviruses. Rev Med Virol 15:157–167 [View Article][PubMed]
    [Google Scholar]
  35. Lwoff A. 1959; Factors influencing the evolution of viral diseases at the cellular level and in the organism. Bacteriol Rev 23:109–124[PubMed]
    [Google Scholar]
  36. McCauley J. W., Hongo S., Kaverin N. V., Kochs G., Lamb R. A., Matrosovich M. N., Perez D. R., Palese P., Presti R. M. et al. 2010; Orthomyxoviridae. In Virus Taxonomy, 9th Report, 9th edn. pp. 750–761 Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. Oxford: Elsevier;
    [Google Scholar]
  37. McIntyre C. L., Savolainen-Kopra C., Hovi T., Simmonds P. 2013; Recombination in the evolution of human rhinovirus genomes. Arch Virol 158:1497–1515 [View Article][PubMed]
    [Google Scholar]
  38. Mozar M., Claverie J. M. 2014; Expanding the Mimiviridae family using asparagine synthase as a sequence bait. Virology 466:112–122 [View Article][PubMed]
    [Google Scholar]
  39. Nabholz B., Glémin S., Galtier N. 2008; Strong variations of mitochondrial mutation rate across mammals–the longevity hypothesis. Mol Biol Evol 25:120–130 [View Article][PubMed]
    [Google Scholar]
  40. Ng T. F., Chen L. F., Zhou Y., Shapiro B., Stiller M., Heintzman P. D., Varsani A., Kondov N. O., Wong W. et al. 2014; Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch. Proc Natl Acad Sci U S A 111:16842–16847 [View Article][PubMed]
    [Google Scholar]
  41. Ogilvie L. A., Bowler L. D., Caplin J., Dedi C., Diston D., Cheek E., Taylor H., Ebdon J. E., Jones B. V. 2013; Genome signature-based dissection of human gut metagenomes to extract subliminal viral sequences. Nat Commun 4:2420 [View Article][PubMed]
    [Google Scholar]
  42. Plyusnin A., Beaty B. J., Elliott R. M., Goldbach R., Kormelink R., Lundkvist A., Schmaljohn C. S., Tesh R. B. 2010; Bunyaviridae. In Virus Taxonomy, 9th Report, 9th edn. pp. 725–741 Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. Oxford: Elsevier;
    [Google Scholar]
  43. Rosario K., Duffy S., Breitbart M. 2012; A field guide to eukaryotic circular single-stranded DNA viruses: insights gained from metagenomics. Arch Virol 157:1851–1871 [View Article][PubMed]
    [Google Scholar]
  44. Roux S., Enault F., Bronner G., Vaulot D., Forterre P., Krupovic M. 2013; Chimeric viruses blur the borders between the major groups of eukaryotic single-stranded DNA viruses. Nat Commun 4:2700 [View Article][PubMed]
    [Google Scholar]
  45. Santti J., Hyypiä T., Kinnunen L., Salminen M. 1999; Evidence of recombination among enteroviruses. J Virol 73:8741–8749[PubMed]
    [Google Scholar]
  46. Sasaki M., Orba Y., Ueno K., Ishii A., Moonga L., Hang’ombe B. M., Mweene A. S., Ito K., Sawa H. 2014; Metagenomic analysis of shrew enteric virome reveals novel viruses related to human stool-associated viruses. J Gen Virol [Epub ahead of print] [View Article][PubMed]
    [Google Scholar]
  47. Shan T., Li L., Simmonds P., Wang C., Moeser A., Delwart E. 2011; The fecal virome of pigs on a high-density farm. J Virol 85:11697–11708 [View Article][PubMed]
    [Google Scholar]
  48. Simmonds P., Welch J. 2006; Frequency and dynamics of recombination within different species of human enteroviruses. J Virol 80:483–493 [View Article][PubMed]
    [Google Scholar]
  49. Simon-Loriere E., Holmes E. C. 2011; Why do RNA viruses recombine?. Nat Rev Microbiol 9:617–626 [View Article][PubMed]
    [Google Scholar]
  50. Smith D. B., Simmonds P., Jameel S., Emerson S. U., Harrison T. J., Meng X. J., Okamoto H., Van der Poel W. H., Purdy M. A. International Committee on Taxonomy of Viruses Hepeviridae Study Group 2014; Consensus proposals for classification of the family Hepeviridae . J Gen Virol 95:2223–2232 [View Article][PubMed]
    [Google Scholar]
  51. Stuart G. W., Moffett P. K., Bozarth R. F. 2006; A comprehensive open reading frame phylogenetic analysis of isometric positive strand ssRNA plant viruses. Arch Virol 151:1159–1177 [View Article][PubMed]
    [Google Scholar]
  52. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  53. Temin H. M. 1970; Malignant transformation of cells by viruses. Perspect Biol Med 14:11–26[PubMed] [CrossRef]
    [Google Scholar]
  54. Van Nguyen D., Harvala H., Ngole E. M., Delaporte E., Woolhouse M. E., Peeters M., Simmonds P. 2014; High rates of infection with novel enterovirus variants in wild populations of mandrills and other old world monkey species. J Virol 88:5967–5976 [View Article][PubMed]
    [Google Scholar]
  55. Yamada T. 2011; Giant viruses in the environment: their origins and evolution. Curr Opin Virol 1:58–62 [View Article][PubMed]
    [Google Scholar]
  56. Yolken R. H., Jones-Brando L., Dunigan D. D., Kannan G., Dickerson F., Severance E., Sabunciyan S., Talbot C. C. Jr, Prandovszky E. et al. 2014; Chlorovirus ATCV-1 is part of the human oropharyngeal virome and is associated with changes in cognitive functions in humans and mice. Proc Natl Acad Sci U S A 111:16106–16111 [View Article][PubMed]
    [Google Scholar]
  57. Young J. C., Chehoud C., Bittinger K., Bailey A., Diamond J. M., Cantu E., Haas A. R., Abbas A., Frye L. et al. 2014; Viral Metagenomics Reveal Blooms of Anelloviruses in the Respiratory Tract of Lung Transplant Recipients. Am J Transplantn/a (Epub ahead of print) [View Article][PubMed]
    [Google Scholar]
  58. Yu C., Hernandez T., Zheng H., Yau S. C., Huang H. H., He R. L., Yang J., Yau S. S. 2013; Real time classification of viruses in 12 dimensions. PLoS ONE 8:e64328 [View Article][PubMed]
    [Google Scholar]
  59. Yu J. M., Zhao G., Ao Y. Y., Li L. L., Wang D., Duan Z. J. 2014; Complete genome sequence of a novel human papillomavirus identified by metagenomic analysis from a child with diarrhea in China. Arch Virol [Epub ahead of print] [View Article][PubMed]
    [Google Scholar]
  60. Zhang W., Li L., Deng X., Kapusinszky B., Delwart E. 2014; What is for dinner? Viral metagenomics of US store bought beef, pork, and chicken. Virology 468–470:303–310 [View Article][PubMed]
    [Google Scholar]
  61. Zhou J., Sun D., Childers A., McDermott T. R., Wang Y., Liles M. R. 2014; Three novel virophage genomes discovered from Yellowstone Lake metagenomes. J Virol [Epub ahead of print] [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000016
Loading
/content/journal/jgv/10.1099/jgv.0.000016
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error