1887

Abstract

Porcine aminopeptidase N (pAPN) is a functional receptor for porcine epidemic diarrhoea virus (PEDV). Although PEDV is known to use the pAPN as the major receptor for cell entry, the crucial domain of the pAPN that interacts with the PEDV is still unknown. In the present study, in order to determine the crucial domain of the pAPN, the extracellular domain of pAPN was divided into three subdomains named SPA, SPB and SPC, based on its secondary structure. Recombinant plasmid pcDNA3.1 expressing SPA, SPB and SPC was constructed and introduced into Madin–Darby canine kidney (MDCK) cells by transfection. Following the detection of PEDV infection in transfected MDCK cells after PEDV challenge, we clearly demonstrated that the SPC subdomain plays a key role in cell entry of PEDV and its expression permits PEDV growth in transfected MDCK cells, while virus propagation can be inhibited by anti-SPC serum, indicating that the SPC subdomain appears to be a crucial functional domain in contributing to efficient PEDV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000211
2015-09-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/9/2656.html?itemId=/content/journal/jgv/10.1099/vir.0.000211&mimeType=html&fmt=ahah

References

  1. Arnold K., Bordoli L., Kopp J., Schwede T. 2006; The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201 [View Article][PubMed]
    [Google Scholar]
  2. Benkert P., Biasini M., Schwede T. 2011; Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350 [View Article][PubMed]
    [Google Scholar]
  3. Biasini M., Bienert S., Waterhouse A., Arnold K., Studer G., Schmidt T., Kiefer F., Cassarino T.G., Bertoni M., other authors. 2014; SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:(W1)W252–W258 [View Article][PubMed]
    [Google Scholar]
  4. Bosch B.J., van der Zee R., de Haan C.A., Rottier P.J. 2003; The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 77:8801–8811 [View Article][PubMed]
    [Google Scholar]
  5. Chen L., Lin Y.L., Peng G., Li F. 2012; Structural basis for multifunctional roles of mammalian aminopeptidase N. Proc Natl Acad Sci U S A 109:17966–17971 [View Article][PubMed]
    [Google Scholar]
  6. Delmas B., Gelfi J., L'Haridon R., Vogel L.K., Sjöström H., Norén O., Laude H. 1992; Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357:417–420 [View Article][PubMed]
    [Google Scholar]
  7. Delmas B., Gelfi J., Sjöström H., Noren O., Laude H. 1993; Further characterization of aminopeptidase-N as a receptor for coronaviruses. Adv Exp Med Biol 342:293–298[PubMed] [CrossRef]
    [Google Scholar]
  8. Godet M., Grosclaude J., Delmas B., Laude H. 1994; Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J Virol 68:8008–8016[PubMed]
    [Google Scholar]
  9. Hansen G.H., Delmas B., Besnardeau L., Vogel L.K., Laude H., Sjöström H., Norén O. 1998; The coronavirus transmissible gastroenteritis virus causes infection after receptor-mediated endocytosis and acid-dependent fusion with an intracellular compartment. J Virol 72:527–534[PubMed]
    [Google Scholar]
  10. Hofmann M., Wyler R. 1988; Propagation of the virus of porcine epidemic diarrhoea in cell culture. J Clin Microbiol 26:2235–2239[PubMed]
    [Google Scholar]
  11. Kenny A.J., Maroux S. 1982; Topology of microvillar membrance hydrolases of kidney and intestine. Physiol Rev 62:91–128[PubMed]
    [Google Scholar]
  12. Lendeckel U., Scholz B., Arndt M., Frank K., Spiess A., Chen H., Roques B.P., Ansorge S. 2000; Inhibition of alanyl-aminopeptidase suppresses the activation-dependent induction of glycogen synthase kinase-3β(GSK-3() in human T cells. Biochem Biophys Res Commun 273:62–65 [View Article][PubMed]
    [Google Scholar]
  13. Li B.X., Ge J.W., Li Y.J. 2007; Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus. Virology 365:166–172 [View Article][PubMed]
    [Google Scholar]
  14. Liu B., Li G., Sui X., Yin J., Wang H., Ren X. 2009; Expression and functional analysis of porcine aminopeptidase N produced in prokaryotic expression system. J Biotechnol 141:91–96 [View Article][PubMed]
    [Google Scholar]
  15. Meng F., Suo S., Zarlenga D.S., Cong Y., Ma X., Zhao Q., Ren X. 2014; A phage-displayed peptide recognizing porcine aminopeptidase N is a potent small molecule inhibitor of PEDV entry. Virology 456-457:20–27 [View Article][PubMed]
    [Google Scholar]
  16. Nam E., Lee C. 2010; Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhoea virus infection. Vet Microbiol 144:41–50 [View Article][PubMed]
    [Google Scholar]
  17. Oh J.S., Song D.S., Park B.K. 2003; Identification of a putative cellular receptor 150 kDa polypeptide for porcine epidemic diarrhoea virus in porcine enterocytes. J Vet Sci 4:269–275[PubMed]
    [Google Scholar]
  18. Reguera J., Santiago C., Mudgal G., Ordoño D., Enjuanes L., Casasnovas J.M. 2012; Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies. PLoS Pathog 8:e1002859 [View Article][PubMed]
    [Google Scholar]
  19. Ren X., Suo S., Jang Y.S. 2011; Development of a porcine epidemic diarrhoea virus M protein-based ELISA for virus detection. Biotechnol Lett 33:215–220 [View Article][PubMed]
    [Google Scholar]
  20. Schultze B., Enjuanes L., Herrler G. 1995; Analysis of the sialic acid-binding activity of the transmissible gastroenteritis virus. Adv Exp Med Biol 380:367–370[PubMed] [CrossRef]
    [Google Scholar]
  21. Shan Z., Tang L., Qiao X., Ge J., Li Y. 2012; Expression and identification of the subsection from pAPN in insect cells expression systems. J Northeast Agric Univ 43:12–16
    [Google Scholar]
  22. van der Hoek L., Pyrc K., Jebbink M.F., Vermeulen-Oost W., Berkhout R.J., Wolthers K.C., Wertheim-van Dillen P.M., Kaandorp J., Spaargaren J., Berkhout B. 2004; Identification of a new human coronavirus. Nat Med 10:368–373 [View Article][PubMed]
    [Google Scholar]
  23. Weiss S.R., Navas-Martin S. 2005; Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 69:635–664 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000211
Loading
/content/journal/jgv/10.1099/vir.0.000211
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error