1887

Abstract

VP1-2, encoded by the UL36 gene of herpes simplex virus (HSV), is a large structural protein, conserved across the family , that is assembled into the tegument and is essential for virus replication. Current evidence indicates that VP1-2 is a central component in the tegumentation and envelopment processes and that it also possesses important roles in capsid transport and entry. However, any detailed mechanistic understanding of VP1-2 function(s) remains limited. This study characterized the replication of HSV-1 tsB7, a temperature-sensitive mutant restricted at the non-permissive temperature due to a defect in VP1-2 function. A tsB7 virus expressing green fluorescent protein-fused VP16 protein was used to track the accumulation and location of a major tegument protein. After infection at the permissive temperature and shift to the non-permissive temperature, the production of infectious virus ceased. VP1-2 accumulated in altered cytosolic clusters, together with VP16 and other virion proteins. Furthermore, correlating with the results of immunofluorescence, electron microscopy demonstrated abnormal cytosolic capsid clustering and a block in envelopment. As VP1-2 encompasses a ubiquitin-specific protease domain, the occurrence of ubiquitin-conjugated proteins during tsB7 infection was also examined at the non-permissive temperature. A striking overaccumulation was observed of ubiquitin-specific conjugates in cytoplasmic clusters, overlapping and adjacent to the VP1-2 clusters. These results are discussed in relation to the possible functions of VP1-2 in the assembly pathway and the nature of the defect in tsB7.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.012492-0
2009-10-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/10/2353.html?itemId=/content/journal/jgv/10.1099/vir.0.012492-0&mimeType=html&fmt=ahah

References

  1. Abaitua F., O'Hare P. 2008; Identification of a highly conserved, functional nuclear localization signal within the N-terminal region of herpes simplex virus type 1 VP1–2 tegument protein. J Virol 82:5234–5244 [CrossRef]
    [Google Scholar]
  2. Batterson W., Roizman B. 1983; Characterization of the herpes simplex virion-associated factor responsible for the induction of alpha genes. J Virol 46:371–377
    [Google Scholar]
  3. Batterson W., Furlong D., Roizman B. 1983; Molecular genetics of herpes simplex virus. VIII. Further characterization of a temperature-sensitive mutant defective in release of viral DNA and in other stages of the viral reproductive cycle. J Virol 45:397–407
    [Google Scholar]
  4. Bottcher S., Maresch C., Granzow H., Klupp B. G., Teifke J. P., Mettenleiter T. C. 2008; Mutagenesis of the active-site cysteine in the ubiquitin-specific protease contained in large tegument protein pUL36 of pseudorabies virus impairs viral replication in vitro and neuroinvasion in vivo . J Virol 82:6009–6016 [CrossRef]
    [Google Scholar]
  5. Bucks M. A., O'Regan K. J., Murphy M. A., Wills J. W., Courtney R. J. 2007; Herpes simplex virus type 1 tegument proteins VP1/2 and UL37 are associated with intranuclear capsids. Virology 361:316–324 [CrossRef]
    [Google Scholar]
  6. Burch A. D., Weller S. K. 2004; Nuclear sequestration of cellular chaperone and proteasomal machinery during herpes simplex virus type 1 infection. J Virol 78:7175–7185 [CrossRef]
    [Google Scholar]
  7. Calistri A., Sette P., Salata C., Cancellotti E., Forghieri C., Comin A., Gottlinger H., Campadelli-Fiume G., Palu G., Parolin C. 2007; Intracellular trafficking and maturation of herpes simplex virus type 1 gB and virus egress require functional biogenesis of multivesicular bodies. J Virol 81:11468–11478 [CrossRef]
    [Google Scholar]
  8. Crump C. M., Yates C., Minson T. 2007; Herpes simplex virus type 1 cytoplasmic envelopment requires functional Vps4. J Virol 81:7380–7387 [CrossRef]
    [Google Scholar]
  9. Desai P. J. 2000; A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. J Virol 74:11608–11618 [CrossRef]
    [Google Scholar]
  10. Desai P., Sexton G. L., McCaffery J. M., Person S. 2001; A null mutation in the gene encoding the herpes simplex virus type 1 UL37 polypeptide abrogates virus maturation. J Virol 75:10259–10271 [CrossRef]
    [Google Scholar]
  11. Fuchs W., Klupp B. G., Granzow H., Mettenleiter T. C. 2004; Essential function of the pseudorabies virus UL36 gene product is independent of its interaction with the UL37 protein. J Virol 78:11879–11889 [CrossRef]
    [Google Scholar]
  12. Fujimuro M., Sawada H., Yokosawa H. 1994; Production and characterization of monoclonal antibodies specific to multi-ubiquitin chains of polyubiquitinated proteins. FEBS Lett 349:173–180 [CrossRef]
    [Google Scholar]
  13. Gibson W., Roizman B. 1972; Proteins specified by herpes simplex virus. VIII. Characterization and composition of multiple capsid forms of subtypes 1 and 2. J Virol 10:1044–1052
    [Google Scholar]
  14. Granzow H., Klupp B. G., Mettenleiter T. C. 2005; Entry of pseudorabies virus: an immunogold-labeling study. J Virol 79:3200–3205 [CrossRef]
    [Google Scholar]
  15. Heine J. W., Honess R. W., Cassai E., Roizman B. 1974; Proteins specified by herpes simplex virus. XII. The virion polypeptides of type 1 strains. J Virol 14:640–651
    [Google Scholar]
  16. Jarosinski K., Kattenhorn L., Kaufer B., Ploegh H., Osterrieder N. 2007; A herpesvirus ubiquitin-specific protease is critical for efficient T cell lymphoma formation. Proc Natl Acad Sci U S A 104:20025–20030 [CrossRef]
    [Google Scholar]
  17. Jovasevic V., Liang L., Roizman B. 2008; Proteolytic cleavage of VP1–2 is required for release of herpes simplex virus 1 DNA into the nucleus. J Virol 82:3311–3319 [CrossRef]
    [Google Scholar]
  18. Klupp B. G., Granzow H., Mundt E., Mettenleiter T. C. 2001; Pseudorabies virus UL37 gene product is involved in secondary envelopment. J Virol 75:8927–8936 [CrossRef]
    [Google Scholar]
  19. Klupp B. G., Fuchs W., Granzow H., Nixdorf R., Mettenleiter T. C. 2002; Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein. J Virol 76:3065–3071 [CrossRef]
    [Google Scholar]
  20. Knipe D. M., Batterson W., Nosal C., Roizman B., Buchan A. 1981; Molecular genetics of herpes simplex virus. VI. Characterization of a temperature-sensitive mutant defective in the expression of all early viral gene products. J Virol 38:539–547
    [Google Scholar]
  21. La Boissiere S., Izeta A., Malcomber S., O'Hare P. 2004; Compartmentalization of VP16 in cells infected with recombinant herpes simplex virus expressing VP16–green fluorescent protein fusion proteins. J Virol 78:8002–8014 [CrossRef]
    [Google Scholar]
  22. Lee J. I., Luxton G. W., Smith G. A. 2006; Identification of an essential domain in the herpesvirus VP1/2 tegument protein: the carboxy terminus directs incorporation into capsid assemblons. J Virol 80:12086–12094 [CrossRef]
    [Google Scholar]
  23. Leege T., Granzow H., Fuchs W., Klupp B., Mettenleiter T. C. 2009; Phenotypic similarities and differences between UL37-deleted pseudorabies virus and herpes simplex virus type 1. J Gen Virol 90:1560–1568 [CrossRef]
    [Google Scholar]
  24. Luxton G. W., Haverlock S., Coller K. E., Antinone S. E., Pincetic A., Smith G. A. 2005; Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. Proc Natl Acad Sci U S A 102:5832–5837 [CrossRef]
    [Google Scholar]
  25. Luxton G. W., Lee J. I., Haverlock-Moyns S., Schober J. M., Smith G. A. 2006; The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport. J Virol 80:201–209 [CrossRef]
    [Google Scholar]
  26. McLean C., Buckmaster A., Hancock D., Buchan A., Fuller A., Minson T. 1982; Monoclonal antibodies to three nonglycosylated antigens of herpes simplex virus type 2. J Gen Virol 63:297–305 [CrossRef]
    [Google Scholar]
  27. McNabb D. S., Courtney R. J. 1992a; Analysis of the UL36 open reading frame encoding the large tegument protein (ICP1/2) of herpes simplex virus type 1. J Virol 66:7581–7584
    [Google Scholar]
  28. McNabb D. S., Courtney R. J. 1992b; Characterization of the large tegument protein (ICP1/2) of herpes simplex virus type 1. Virology 190:221–232 [CrossRef]
    [Google Scholar]
  29. Mettenleiter T. C. 2002; Herpesvirus assembly and egress. J Virol 76:1537–1547 [CrossRef]
    [Google Scholar]
  30. Michael K., Klupp B. G., Mettenleiter T. C., Karger A. 2006; Composition of pseudorabies virus particles lacking tegument protein US3, UL47, or UL49 or envelope glycoprotein E. J Virol 80:1332–1339 [CrossRef]
    [Google Scholar]
  31. Rixon F. 1993; Stucture and assembly of herpesviruses. Semin Virol 4:135–144 [CrossRef]
    [Google Scholar]
  32. Roberts A. P., Abaitua F., O'Hare P., McNab D., Rixon F. J., Pasdeloup D. 2009; Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1 (HSV-1). J Virol 83:105–116 [CrossRef]
    [Google Scholar]
  33. Skepper J. N., Whiteley A., Browne H., Minson A. 2001; Herpes simplex virus nucleocapsids mature to progeny virions by an envelopment → deenvelopment → reenvelopment pathway. J Virol 75:5697–5702 [CrossRef]
    [Google Scholar]
  34. Trus B. L., Newcomb W. W., Cheng N., Cardone G., Marekov L., Homa F. L., Brown J. C., Steven A. C. 2007; Allosteric signaling and a nuclear exit strategy: binding of UL25/UL17 heterodimers to DNA-filled HSV-1 capsids. Mol Cell 26:479–489 [CrossRef]
    [Google Scholar]
  35. Wang J., Loveland A. N., Kattenhorn L. M., Ploegh H. L., Gibson W. 2006; High-molecular-weight protein (pUL48) of human cytomegalovirus is a competent deubiquitinating protease: mutant viruses altered in its active-site cysteine or histidine are viable. J Virol 80:6003–6012 [CrossRef]
    [Google Scholar]
  36. Ward P. L., Avitabile E., Campadelli-Fiume G., Roizman B. 1998; Conservation of the architecture of the Golgi apparatus related to a differential organization of microtubules in polykaryocytes induced by syn mutants of herpes simplex virus 1. Virology 241:189–199 [CrossRef]
    [Google Scholar]
  37. Zhou Z.-H., Chen D. H., Jakana J., Rixon F. J., Chiu W. 1999; Visualization of tegument–capsid interactions and DNA in intact herpes simplex virus type 1 virions. J Virol 73:3210–3218
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.012492-0
Loading
/content/journal/jgv/10.1099/vir.0.012492-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error