1887

Abstract

The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) is abundantly expressed in latently infected sensory neurons. In small animal models of infection, expression of the first 1.5 kb of LAT coding sequences is necessary and sufficient for wild-type reactivation from latency. The ability of LAT to inhibit apoptosis is important for reactivation from latency. Within the first 1.5 kb of LAT coding sequences and LAT promoter sequences, additional transcripts have been identified. For example, the anti-sense to LAT transcript (AL) is expressed in the opposite direction to LAT from the 5′ end of LAT and LAT promoter sequences. In addition, the upstream of LAT (UOL) transcript is expressed in the LAT direction from sequences in the LAT promoter. Further examination of the first 1.5 kb of LAT coding sequences revealed two small ORFs that are anti-sense with respect to LAT (AL2 and AL3). A transcript spanning AL3 was detected in productively infected cells, mouse neuroblastoma cells stably expressing LAT and trigeminal ganglia (TG) of latently infected mice. Peptide-specific IgG directed against AL3 specifically recognized a protein migrating near 15 kDa in cells stably transfected with LAT, mouse neuroblastoma cells transfected with a plasmid containing the AL3 ORF and TG of latently infected mice. The inability to detect the AL3 protein during productive infection may have been because the 5′ terminus of the AL3 transcript was downstream of the first in-frame methionine of the AL3 ORF during productive infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.013318-0
2009-10-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/10/2342.html?itemId=/content/journal/jgv/10.1099/vir.0.013318-0&mimeType=html&fmt=ahah

References

  1. Ahmed M., Lock M., Miller C. G., Fraser N. W. 2002; Regions of the herpes simplex virus type 1 latency-associated transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo . J Virol 76:717–729 [CrossRef]
    [Google Scholar]
  2. Branco F. J., Fraser N. W. 2005; Herpes simplex virus type 1 latency-associated transcript expression protects trigeminal ganglion neurons from apoptosis. J Virol 79:9019–9025 [CrossRef]
    [Google Scholar]
  3. Carpenter D., Hsiang C., Jin L., Osorio N., BenMohamed L., Jones C., Wechsler S. L. 2007; Stable cell lines expressing high levels of the herpes simplex virus type 1 LAT are refractory to caspase 3 activation and DNA laddering following cold shock induced apoptosis. Virology 369:12–18 [CrossRef]
    [Google Scholar]
  4. Chan D., Cohen J., Naito J., Mott K. R., Osorio N., Jin L., Fraser N. W., Jones C., Wechsler S. L., Perng G.-C. 2006; A mutant deleted for most of the herpes simplex virus type 1 (HSV-1) UOL gene does not affect the spontaneous reactivation phenotype in rabbits. J Neurovirol 12:5–16 [CrossRef]
    [Google Scholar]
  5. Chen S. H., Kramer M. F., Schaffer P. A., Coen D. M. 1997; A viral function represses accumulation of transcripts from productive-cycle genes in mouse ganglia latently infected with herpes simplex virus. J Virol 71:5878–5884
    [Google Scholar]
  6. Croen K. D., Ostrove J. M., Dragovic L. J., Smialek J. E., Straus S. E. 1987; Latent herpes simplex virus in human trigeminal ganglia. Detection of an immediate early gene “anti-sense” transcript by in situ hybridization. N Engl J Med 317:1427–1432 [CrossRef]
    [Google Scholar]
  7. Deatly A. M., Spivack J. G., Lavi E., Fraser N. W. 1987; RNA from an immediate early region of the type 1 herpes simplex virus genome is present in the trigeminal ganglia of latently infected mice. Proc Natl Acad Sci U S A 84:3204–3208 [CrossRef]
    [Google Scholar]
  8. Deatly A. M., Spivack J. G., Lavi E., O'Boyle D. R., Fraser N. W. 1988; Latent herpes simplex virus type 1 transcripts in peripheral and central nervous system tissues of mice map to similar regions of the viral genome. J Virol 62:749–756
    [Google Scholar]
  9. Dynan W. S., Tjian R. 1983; The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35:79–87 [CrossRef]
    [Google Scholar]
  10. Ferguson S. M., Brasnjo G., Hayashi M., Wölfel M., Collesi C., Giovedi S., Raimondi A., Gong L.-W., Ariel P. other authors 2007; A selective activity-dependent requirement for dynamin 1 in synaptic endocytosis. Science 316:570–574 [CrossRef]
    [Google Scholar]
  11. Garber D. A., Schaffer P. A., Knipe D. M. 1997; A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. J Virol 71:5885–5893
    [Google Scholar]
  12. Gesser R. M., Koo S. C. 1997; Latent herpes simplex virus type 1 gene expression in ganglia innervating the human gastrointestinal tract. J Virol 71:4103–4106
    [Google Scholar]
  13. Henderson G., Peng W., Jin L., Perng G.-C., Nesburn A. B., Wechsler S. L., Jones C. 2002; Regulation of caspase 8- and caspase 9-induced apoptosis by the herpes simplex virus latency-associated transcript. J Neurovirol 8:103–111 [CrossRef]
    [Google Scholar]
  14. Inman M., Perng G.-C., Henderson G., Ghiasi H., Nesburn A. B., Wechsler S. L., Jones C. 2001; Region of herpes simplex virus type 1 latency-associated transcript sufficient for wild-type spontaneous reactivation promotes cell survival in tissue culture. J Virol 75:3636–3646 [CrossRef]
    [Google Scholar]
  15. Jin L., Peng W., Perng G.-C., Nesburn A. B., Jones C., Wechsler S. L. 2003; Identification of herpes simplex virus type 1 (HSV-1) latency associated transcript (LAT) sequences that both inhibit apoptosis and enhance the spontaneous reactivation phenotype. J Virol 77:6556–6561 [CrossRef]
    [Google Scholar]
  16. Jin L., Perng G.-C., Mott K. R., Osorio N., Naito J., Brick D. J., Carpenter D., Jones C., Wechsler S. L. 2005; A herpes simplex virus type 1 mutant expressing a baculovirus inhibitor of apoptosis gene in place of latency-associated transcript has a wild-type reactivation phenotype in the mouse. J Virol 79:12286–12295 [CrossRef]
    [Google Scholar]
  17. Jin L., Carpenter D., Moerdyk-Schauwecker M., Vanarsdall A. L., Osorio N., Hsiang C., Jones C., Wechsler S. L. 2008; Cellular FLIP can substitute for the herpes simplex virus type 1 LAT gene to support a wild type virus reactivation phenotype in mice. J Neurovirol 14:389–400 [CrossRef]
    [Google Scholar]
  18. Jones C. 1998; Alphaherpesvirus latency: its role in disease and survival of the virus in nature. Adv Virus Res 51:81–133
    [Google Scholar]
  19. Jones C. 2003; Herpes simplex virus type 1 and bovine herpesvirus 1 latency. Clin Microbiol Rev 16:79–95 [CrossRef]
    [Google Scholar]
  20. Jones C., Inman M., Peng W., Henderson G., Doster A., Perng G.-C., Kaenjak Angeletti A. 2005; The herpes simplex virus type 1 (HSV-1) locus that encodes the latency-associated transcript (LAT) enhances the frequency of encephalitis in male BALB/C mice. J Virol 79:14465–14469 [CrossRef]
    [Google Scholar]
  21. Kaufmann J., Smale S. T. 1994; Direct recognition of initiator elements by a component of the transcription factor IID complex. Genes Dev 8:821–829 [CrossRef]
    [Google Scholar]
  22. Krause P. R., Croen K. D., Straus S. E., Ostrove J. M. 1988; Detection and preliminary characterization of herpes simplex virus type 1 transcripts in latently infected human trigeminal ganglia. J Virol 62:4819–4823
    [Google Scholar]
  23. Lohr J. M., Nelson J. A., Oldstone M. B. 1990; Is herpes simplex virus associated with peptic ulcer disease?. J Virol 64:2168–2174
    [Google Scholar]
  24. Meyer F., Perez S., Jiang Y., Zhou Y., Henderson G., Jones C. 2007a; Identification of a novel protein encoded by the latency-related gene of bovine herpesvirus 1. J Neurovirol 13:569–578 [CrossRef]
    [Google Scholar]
  25. Meyer F., Perez S., Geiser V., Sintek M., Inman M., Jones C. 2007b; A protein encoded by the bovine herpes virus 1 latency-related gene interacts with specific cellular regulatory proteins, including CCAAT enhancer binding protein alpha. J Virol 81:59–67 [CrossRef]
    [Google Scholar]
  26. Mitchell W. J., Lirette R. P., Fraser N. W. 1990; Mapping of low abundance latency-associated RNA in the trigeminal ganglia of mice latently infected with herpes simplex virus type 1. J Gen Virol 71:125–132 [CrossRef]
    [Google Scholar]
  27. Mott K. R., Osorio N., Jin L., Brick D. J., Naito J., Cooper J., Henderson G., Inman M., Jones C. other authors 2003; The bovine herpesvirus 1 LR ORF2 is critical for this gene's ability to restore the high wild-type reactivation phenotype to a Herpes simplex virus-1 LAT null mutant. J Gen Virol 84:2975–2985 [CrossRef]
    [Google Scholar]
  28. Murthy V. N., Camilli P. 2003; Cell biology of the presynaptic terminal. Annu Rev Neurosci 26:701–728 [CrossRef]
    [Google Scholar]
  29. Nahmias A. J., Roizman B. 1973; Infection with herpes-simplex viruses 1 and 2. 3. N Engl J Med 289, 781–789 [CrossRef]
    [Google Scholar]
  30. Naito J., Mukerjee R., Mott K. R., Kang W., Osorio N., Fraser N. W., Perng G.-C. 2005; Identification of a protein encoded in the herpes simplex virus type 1 latency associated transcript promoter region. Virus Res 108:101–110 [CrossRef]
    [Google Scholar]
  31. Nesburn A. B. editor 1983 Report of the Corneal Disease Panel: Vision Research – a National Plan, 1983–1987, part III St Louis: CV Mosby;
    [Google Scholar]
  32. Newton A. J., Kirchhusen T., Murthy V. N. 2006; Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc Natl Acad Sci U S A 103:17955–17960 [CrossRef]
    [Google Scholar]
  33. Peng W., Henderson G., Perng G.-C., Nesburn A. B., Wechsler S. L., Jones C. 2003; The gene that encodes the herpes simplex virus type 1 latency-associated transcript influences the accumulation of transcripts (Bcl-xL and Bcl-xS) that encode apoptotic regulatory proteins. J Virol 77:10714–10718 [CrossRef]
    [Google Scholar]
  34. Peng W., Jin L., Henderson G., Perng G.-C., Brick D. J., Nesburn A. B., Wechsler S. L., Jones C. 2004; Mapping herpes simplex virus type 1 (HSV-1) LAT sequences that protect from apoptosis mediated by a plasmid expressing caspase-8. J Neurovirol 10:260–265 [CrossRef]
    [Google Scholar]
  35. Peng W., Henderson G., Inman M., BenMohamed L., Perng G.-C., Wechsler S. L., Jones C. 2005; The locus encompassing the latency-associated transcript (LAT) of herpes simplex virus type 1 interferes with and delays interferon expression in productively infected neuroblastoma cells and trigeminal ganglia of acutely infected mice. J Virol 79:6162–6171 [CrossRef]
    [Google Scholar]
  36. Peng W., Vitvitskaia O., Carpenter D., Wechsler S. L., Jones C. 2008; Identification of two small RNAs within the first 1.5-kb of the herpes simplex virus type 1 (HSV-1) encoded latency-associated transcript (LAT). J Neurovirol 14:41–52 [CrossRef]
    [Google Scholar]
  37. Perng G.-C., Dunkel E. C., Geary P. A., Slanina S. M., Ghiasi H., Kaiwar R., Nesburn A. B., Wechsler S. L. 1994; The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency. J Virol 68:8045–8055
    [Google Scholar]
  38. Perng G.-C., Ghiasi H., Slanina S. M., Nesburn A. B., Wechsler S. L. 1996a; The spontaneous reactivation function of the herpes simplex virus type 1 LAT gene resides completely within the first 1.5 kilobases of the 8.3- kilobase primary transcript. J Virol 70:976–984
    [Google Scholar]
  39. Perng G.-C., Chokephaibulkit K., Thompson R. L., Sawtell N. M., Slanina S. M., Ghiasi H., Nesburn A. B., Wechsler S. L. 1996b; The region of the herpes simplex virus type 1 LAT gene that is colinear with the ICP34.5 gene is not involved in spontaneous reactivation. J Virol 70:282–291
    [Google Scholar]
  40. Perng G.-C., Slanina S. M., Ghiasi H., Nesburn A. B., Wechsler S. L. 1996c; A 371-nucleotide region between the herpes simplex virus type 1 (HSV-1) LAT promoter and the 2-kilobase LAT is not essential for efficient spontaneous reactivation of latent HSV-1. J Virol 70:2014–2018
    [Google Scholar]
  41. Perng G.-C., Slanina S. M., Yukht A., Drolet B. S., Keleher W. Jr, Ghiasi H., Nesburn A. B., Wechsler S. L. 1999; A herpes simplex virus type 1 latency-associated transcript mutant with increased virulence and reduced spontaneous reactivation. J Virol 73:920–929
    [Google Scholar]
  42. Perng G.-C., Jones C., Ciacci-Zanella J., Stone M., Henderson G., Yukht A., Slanina S. M., Hoffman F. M., Ghiasi H. other authors 2000; Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript (LAT). Science 287:1500–1503 [CrossRef]
    [Google Scholar]
  43. Perng G.-C., Esmaili D., Slanina S. M., Yukht A., Ghiasi H., Osorio N., Mott K. R., Maguen B., Jin L. other authors 2001; Three herpes simplex virus type 1 latency-associated transcript mutants with distinct and asymmetric effects on virulence in mice compared with rabbits. J Virol 75:9018–9028 [CrossRef]
    [Google Scholar]
  44. Perng G.-C., Maguen B., Jing L., Mott K. R., Kurylo J., BenMohamed O., Yukht A., Osorio N., Nesburn A. B. other authors 2002a; A novel herpes simplex virus type 1 transcript (AL-RNA) antisense to the 5′ end of LAT (latency associated transcript) produces a protein in infected rabbits. J Virol 76:8003–8010 [CrossRef]
    [Google Scholar]
  45. Perng G.-C., Maguen B., Jin L., Mott K. R., Osorio N., Slanina S. M., Yukht A., Ghiasi H., Nesburn A. B. other authors 2002b; A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latency-associated transcript gene and restore wild-type reactivation levels. J Virol 76:1224–1235 [CrossRef]
    [Google Scholar]
  46. Rock D. L., Nesburn A. B., Ghiasi H., Ong J., Lewis T. L., Lokensgard J. R., Wechsler S. L. 1987; Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J Virol 61:3820–3826
    [Google Scholar]
  47. Singh J., Wagner E. 1993; Transcriptional analysis of the herpes simplex virus type 1 region containing the TRL/UL junction. Virology 196:220–231 [CrossRef]
    [Google Scholar]
  48. Stevens J. G., Wagner E. K., Devi-Rao G. B., Cook M. L., Feldman L. T. 1987; RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235:1056–1059 [CrossRef]
    [Google Scholar]
  49. Sudhof T. C. 2004; The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547 [CrossRef]
    [Google Scholar]
  50. Wagner E. K., Bloom D. C. 1997; Experimental investigation of herpes simplex virus latency. Clin Microbiol Rev 10:419–443
    [Google Scholar]
  51. Wagner E. K., Devi-Rao G., Feldman L. T., Dobson A. T., Zhang Y. F., Flanagan W. M., Stevens J. G. 1988a; Physical characterization of the herpes simplex virus latency-associated transcript in neurons. J Virol 62:1194–1202
    [Google Scholar]
  52. Wagner E. K., Flanagan W. M., Devi-Rao G., Zhang Y. F., Hill J. M., Anderson K. P., Stevens J. G. 1988b; The herpes simplex virus latency-associated transcript is spliced during the latent phase of infection. J Virol 62:4577–4585
    [Google Scholar]
  53. Whitley R. J. 1991; Herpes simplex virus infections of the central nervous system. Encephalitis and neonatal herpes. Drugs 42:406–427 [CrossRef]
    [Google Scholar]
  54. Whitley R. J. 1997 Herpes Simplex Virus Philadelphia, New York: Lippincott-Raven;
    [Google Scholar]
  55. Winkler M. T., Schang L. S., Doster A., Holt T., Jones C. 2000; Analysis of cyclins in trigeminal ganglia of calves infected with bovine herpesvirus-1. J Gen Virol 81:2993–2998
    [Google Scholar]
  56. Winkler M. T., Doster A., Sur J. H., Jones C. 2002; Analysis of bovine trigeminal ganglia following infection with bovine herpesvirus 1. Vet Microbiol 86:139–155 [CrossRef]
    [Google Scholar]
  57. Yu M., Yang X.-Y., Schmidt T., Chinenov Y., Wang R., Martin M. E. 1997; GA-binding protein-dependent transcription initiator elements. J Biol Chem 272:29060–29067 [CrossRef]
    [Google Scholar]
  58. Zwaagstra J. C., Ghiasi H., Slanina S. M., Nesburn A. B., Wheatley S. C., Lillycrop K., Wood J., Latchman D. S., Patel K., Wechsler S. L. 1990; Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuron-derived cells: evidence for neuron specificity and for a large LAT transcript. J Virol 64:5019–5028
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.013318-0
Loading
/content/journal/jgv/10.1099/vir.0.013318-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error