1887

Abstract

Mutations that occurred during adaptation of human cytomegalovirus to cell culture were monitored by isolating four strains from clinical samples, passaging them in various cell types and sequencing ten complete virus genomes from the final passages. Mutational dynamics were assessed by targeted sequencing of intermediate passages and the original clinical samples. Gene RL13 and the UL128 locus (UL128L, consisting of genes UL128, UL130 and UL131A) mutated in all strains. Mutations in RL13 occurred in fibroblast, epithelial and endothelial cells, whereas those in UL128L were limited to fibroblasts and detected later than those in RL13. In addition, a region containing genes UL145, UL144, UL142, UL141 and UL140 mutated in three strains. All strains exhibited numerous mutations in other regions of the genome, with a preponderance in parts of the inverted repeats. An investigation was carried out on the kinetic growth yields of viruses derived from selected passages that were predominantly non-mutated in RL13 and UL128L (RL13UL128L), or that were largely mutated in RL13 (RL13UL128L) or both RL13 and UL128L (RL13UL128L). RL13UL128L viruses produced greater yields of infectious progeny than RL13UL128L viruses, and RL13UL128L viruses produced greater yields than RL13UL128L viruses. These results suggest strongly that RL13 and UL128L exert at least partially independent suppressive effects on growth in fibroblasts. As all isolates proved genetically unstable in all cell types tested, caution is advised in choosing and monitoring strains for experimental studies of vulnerable functions, particularly those involved in cell tropism, immune evasion or growth temperance.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.018994-0
2010-06-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/6/1535.html?itemId=/content/journal/jgv/10.1099/vir.0.018994-0&mimeType=html&fmt=ahah

References

  1. Adler, B., Scrivano, L., Ruzcics, Z., Rupp, B., Sinzger, C. & Koszinowski, U.(2006). Role of human cytomegalovirus UL131A in cell type-specific virus entry and release. J Gen Virol 87, 2451–2460.[CrossRef] [Google Scholar]
  2. Akter, P., Cunningham, C., McSharry, B. P., Dolan, A., Addison, C., Dargan, D. J., Hassan-Walker, A. F., Emery, V. C., Griffiths, P. D. & other authors(2003). Two novel spliced genes in human cytomegalovirus. J Gen Virol 84, 1117–1122.[CrossRef] [Google Scholar]
  3. Bissinger, A. L., Sinzger, C., Kaiserling, E. & Jahn, G.(2002). Human cytomegalovirus as a direct pathogen: correlation of multiorgan involvement and cell distribution with clinical and pathological findings in a case of congenital inclusion disease. J Med Virol 67, 200–206.[CrossRef] [Google Scholar]
  4. Bradley, A. J., Kovács, I. J., Gatherer, D., Dargan, D. J., Alkharsah, K. R., Chan, P. K. S., Carman, W. F., Dedicoat, M., Emery, V. C. & other authors(2008). Genotypic analysis of two hypervariable human cytomegalovirus genes. J Med Virol 80, 1615–1623.[CrossRef] [Google Scholar]
  5. Bradley, A. J., Lurain, N. S., Ghazal, P., Trivedi, U., Cunningham, C., Baluchova, K., Gatherer, D., Wilkinson, G. W. G., Dargan, D. J. & Davison, A. J.(2009). High-throughput sequence analysis of variants of human cytomegalovirus strains Towne and AD169. J Gen Virol 90, 2375–2380.[CrossRef] [Google Scholar]
  6. Cha, T.-A., Tom, E., Kemble, G. W., Duke, G. M., Mocarski, E. S. & Spaete, R. R.(1996). Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J Virol 70, 78–83. [Google Scholar]
  7. Chee, M. S., Bankier, A. T., Beck, S., Bohni, R., Brown, C. M., Cerny, R., Horsnell, T., Hutchison, C. A., III, Kouzarides, T. & other authors(1990). Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154, 125–169. [Google Scholar]
  8. Cunningham, C., Gatherer, D., Hilfrich, B., Baluchova, K., Dargan, D. J., Thomson, M., Griffiths, P. D., Wilkinson, G. W. G., Schulz, T. F. & Davison, A. J.(2010). Sequences of complete human cytomegalovirus genomes from infected cell cultures and clinical specimens. J Gen Virol 91, 605–615.[CrossRef] [Google Scholar]
  9. Davison, A. J., Dolan, A., Akter, P., Addison, C., Dargan, D. J., Alcendor, D. J., McGeoch, D. J. & Hayward, G. S.(2003a). The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol 84, 17–28.[CrossRef] [Google Scholar]
  10. Davison, A. J., Akter, P., Cunningham, C., Dolan, A., Addison, C., Dargan, D. J., Hassan-Walker, A. F., Emery, V. C., Griffiths, P. D. & Wilkinson, G. W. G.(2003b). Homology between the human cytomegalovirus RL11 gene family and human adenovirus E3 genes. J Gen Virol 84, 657–663.[CrossRef] [Google Scholar]
  11. Dolan, A., Cunningham, C., Hector, R. D., Hassan-Walker, A. F., Lee, L., Addison, C., Dargan, D. J., McGeoch, D. J., Gatherer, D. & other authors(2004). Genetic content of wild-type human cytomegalovirus. J Gen Virol 85, 1301–1312.[CrossRef] [Google Scholar]
  12. Emery, V. C., Cope, A. V., Bowen, E. F., Gor, D. & Griffiths, P. D.(1999). The dynamics of human cytomegalovirus replication in vivo. J Exp Med 190, 177–182.[CrossRef] [Google Scholar]
  13. Gerna, G., Percivalle, E., Baldanti, F., Sozzani, S., Lanzarini, P., Genini, E., Lilleri, D. & Revello, M. G.(2000). Human cytomegalovirus replicates abortively in polymorphonuclear leukocytes after transfer from infected endothelial cells via transient microfusion events. J Virol 74, 5629–5638.[CrossRef] [Google Scholar]
  14. Gerna, G., Percivalle, E., Baldanti, F. & Revello, M. G.(2002a). Lack of transmission to polymorphonuclear leukocytes and human umbilical vein endothelial cells as a marker of attenuation of human cytomegalovirus. J Med Virol 66, 335–339.[CrossRef] [Google Scholar]
  15. Gerna, G., Percivalle, E., Sarasini, A. & Revello, M. G.(2002b). Human cytomegalovirus and human umbilical vein endothelial cells: restriction of primary isolation to blood samples and susceptibilities of clinical isolates from other sources to adaptation. J Clin Microbiol 40, 233–238.[CrossRef] [Google Scholar]
  16. Gerna, G., Percivalle, E., Lilleri, D., Lozza, L., Fornara, C., Hahn, G., Baldanti, F. & Revello, M. G.(2005). Dendritic-cell infection by human cytomegalovirus is restricted to strains carrying functional UL131–128 genes and mediates efficient viral antigen presentation to CD8+ T cells. J Gen Virol 86, 275–284.[CrossRef] [Google Scholar]
  17. Gerna, G., Sarasini, A., Patrone, M., Percivalle, E., Fiorina, L., Campanini, G., Gallina, A., Baldanti, F. & Revello, M. G.(2008). Human cytomegalovirus serum neutralizing antibodies block virus infection of endothelial/epithelial cells, but not fibroblasts, early during primary infection. J Gen Virol 89, 853–865.[CrossRef] [Google Scholar]
  18. Hahn, G., Khan, H., Baldanti, F., Koszinowski, U. H., Revello, M. G. & Gerna, G.(2002). The human cytomegalovirus ribonucleotide reductase homolog UL45 is dispensable for growth in endothelial cells, as determined by a BAC-cloned clinical isolate of human cytomegalovirus with preserved wild-type characteristics. J Virol 76, 9551–9555.[CrossRef] [Google Scholar]
  19. Hahn, G., Revello, M. G., Patrone, M., Percivalle, E., Campanini, G., Sarasini, A., Wagner, M., Gallina, A., Milanesi, G. & other authors(2004). Human cytomegalovirus UL131–128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J Virol 78, 10023–10033.[CrossRef] [Google Scholar]
  20. Kahl, M., Siegel-Axel, D., Stenglein, S., Jahn, G. & Sinzger, C.(2000). Efficient lytic infection of human arterial endothelial cells by human cytomegalovirus strains. J Virol 74, 7628–7635.[CrossRef] [Google Scholar]
  21. Macagno, A., Bernasconi, N., Vanzetta, F., Dander, E., Sarasini, A., Revello, M. G., Gerna, G., Sallusto, F. & Lanzavecchia, A.(2010). Isolation of human monoclonal antibodies that potently neutralize HCMV infection by targeting different epitopes on the gH/gL/UL128–131A complex. J Virol 84, 1005–1013.[CrossRef] [Google Scholar]
  22. MacCormac, L. P. & Grundy, J. E.(1999). Two clinical isolates and the Toledo strain of cytomegalovirus contain endothelial cell tropic variants that are not present in the AD169, Towne, or Davis strains. J Med Virol 57, 298–307.[CrossRef] [Google Scholar]
  23. Murphy, E., Yu, D., Grimwood, J., Schmutz, J., Dickson, M., Jarvis, M. A., Hahn, G., Nelson, J. A., Myers, R. M. & Shenk, T. E.(2003). Coding potential of laboratory and clinical strains of human cytomegalovirus. Proc Natl Acad Sci U S A 100, 14976–14981.[CrossRef] [Google Scholar]
  24. Novotny, J., Rigoutsos, I., Coleman, D. & Shenk, T.(2001).In silico structural and functional analysis of the human cytomegalovirus (HHV5) genome. J Mol Biol 310, 1151–1166.[CrossRef] [Google Scholar]
  25. Patrone, M., Secchi, M., Fiorina, L., Ierardi, M., Milanesi, G. & Gallina, A.(2005). Human cytomegalovirus UL130 protein promotes endothelial cell infection through a producer cell modification of the virion. J Virol 79, 8361–8373.[CrossRef] [Google Scholar]
  26. Patrone, M., Secchi, M., Bonaparte, E., Milanesi, G. & Gallina, A.(2007). Cytomegalovirus UL131–128 products promote gB conformational transition and gB–gH interaction during entry into endothelial cells. J Virol 81, 11479–11488.[CrossRef] [Google Scholar]
  27. Plachter, B., Sinzger, C. & Jahn, G.(1996). Cell types involved in replication and distribution of human cytomegalovirus. Adv Virus Res 46, 195–261. [Google Scholar]
  28. Revello, M. G., Baldanti, F., Percivalle, E., Sarasini, A., De-Giuli, L., Genini, E., Lilleri, D., Labò, N. & Gerna, G.(2001).In vitro selection of human cytomegalovirus variants unable to transfer virus and virus products from infected cells to polymorphonuclear leukocytes and to grow in endothelial cells. J Gen Virol 82, 1429–1438. [Google Scholar]
  29. Ryckman, B. J., Jarvis, M. A., Drummond, D. D., Nelson, J. A. & Johnson, D. C.(2006). Human cytomegalovirus entry into epithelial and endothelial cells depends on genes UL128 to UL150 and occurs by endocytosis and low-pH fusion. J Virol 80, 710–722.[CrossRef] [Google Scholar]
  30. Ryckman, B. J., Chase, M. C. & Johnson, D. C.(2008a). HCMV gH/gL/UL128–131 interferes with virus entry into epithelial cells: evidence for cell type-specific receptors. Proc Natl Acad Sci U S A 105, 14118–14123.[CrossRef] [Google Scholar]
  31. Ryckman, B. J., Rainish, B. L., Chase, M. C., Borton, J. A., Nelson, J. A., Jarvis, M. A. & Johnson, D. C.(2008b). Characterization of the human cytomegalovirus gH/gL/UL128–131 complex that mediates entry into epithelial and endothelial cells. J Virol 82, 60–70.[CrossRef] [Google Scholar]
  32. Sekulin, K., Görzer, I., Heiss-Czedik, D. & Puchhammer-Stöckl, E.(2007). Analysis of the variability of CMV strains in the RL11D domain of the RL11 multigene family. Virus Genes 35, 577–583.[CrossRef] [Google Scholar]
  33. Sinzger, C.(2008). Entry route of HCMV into endothelial cells. J Clin Virol 41, 174–179.[CrossRef] [Google Scholar]
  34. Sinzger, C., Grefte, A., Plachter, B., Gouw, A. S., The, T. H. & Jahn, G.(1995). Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J Gen Virol 76, 741–750.[CrossRef] [Google Scholar]
  35. Sinzger, C., Schmidt, K., Knapp, J., Kahl, M., Beck, R., Waldman, J., Hebart, H., Einsele, H. & Jahn, G.(1999). Modification of human cytomegalovirus tropism through propagation in vitro is associated with changes in the viral genome. J Gen Virol 80, 2867–2877. [Google Scholar]
  36. Sinzger, C., Kahl, M., Laib, K., Klingel, K., Rieger, P., Plachter, B. & Jahn, G.(2000). Tropism of human cytomegalovirus for endothelial cells is determined by a post-entry step dependent on efficient translocation to the nucleus. J Gen Virol 81, 3021–3035. [Google Scholar]
  37. Sinzger, C., Digel, M. & Jahn, G.(2008a). Cytomegalovirus cell tropism. Curr Top Microbiol Immunol 325, 63–83. [Google Scholar]
  38. Sinzger, C., Hahn, G., Digel, M., Katona, R., Sampaio, K. L., Messerle, M., Hengel, H., Koszinowski, U., Brune, W. & Adler, B.(2008b). Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E. J Gen Virol 89, 359–368.[CrossRef] [Google Scholar]
  39. Tomasec, P., Wang, E. C., Davison, A. J., Vojtesek, B., Armstrong, M., Griffin, C., McSharry, B. P., Morris, R. J., Llewellyn-Lacey, S. & other authors(2005). Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat Immunol 6, 181–188. [Google Scholar]
  40. Waldman, W. J., Sneddon, J. M., Stephens, R. E. & Roberts, W. H.(1989). Enhanced endothelial cytopathogenicity induced by a cytomegalovirus strain propagated in endothelial cells. J Med Virol 28, 223–230.[CrossRef] [Google Scholar]
  41. Waldman, W. J., Roberts, W. H., Davis, D. H., Williams, M. V., Sedmak, D. D. & Stephens, R. E.(1991). Preservation of natural endothelial cytopathogenicity of cytomegalovirus by propagation in endothelial cells. Arch Virol 117, 143–164.[CrossRef] [Google Scholar]
  42. Wang, D. & Shenk, T.(2005a). Human cytomegalovirus UL131 open reading frame is required for epithelial cell tropism. J Virol 79, 10330–10338.[CrossRef] [Google Scholar]
  43. Wang, D. & Shenk, T.(2005b). Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc Natl Acad Sci U S A 102, 18153–18158.[CrossRef] [Google Scholar]
  44. Wyrwicz, L. S. & Rychlewski, L.(2007). Herpes glycoprotein gL is distantly related to chemokine receptor ligands. Antiviral Res 75, 83–86.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.018994-0
Loading
/content/journal/jgv/10.1099/vir.0.018994-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error