1887

Abstract

Cell-to-cell movement of potexviruses requires coordinated action of the coat protein and triple gene block (TGB) proteins. The structural properties of mosaic virus (AltMV) TGB3 were examined by methods differentiating between signal peptides and transmembrane domains, and its subcellular localization was studied by -mediated transient expression and confocal microscopy. Unlike potato virus X (PVX) TGB3, AltMV TGB3 was not associated with the endoplasmic reticulum, and accumulated preferentially in mesophyll cells. Deletion and site-specific mutagenesis revealed an internal signal VL(17,18) of TGB3 essential for chloroplast localization, and either deletion of the TGB3 start codon or alteration of the chloroplast-localization signal limited cell-to-cell movement to the epidermis, yielding a virus that was unable to move into the mesophyll layer. Overexpression of AltMV TGB3 from either AltMV or PVX infectious clones resulted in veinal necrosis and vesiculation at the chloroplast membrane, a cytopathology not observed in wild-type infections. The distinctive mesophyll and chloroplast localization of AltMV TGB3 highlights the critical role played by mesophyll targeting in virus long-distance movement within plants.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.019448-0
2010-08-01
2024-05-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/8/2102.html?itemId=/content/journal/jgv/10.1099/vir.0.019448-0&mimeType=html&fmt=ahah

References

  1. Adams M. J., Antoniw J. F., Bar-Joseph M., Brunt A. A., Candresse T., Foster G. D., Martelli G. P., Milne R. G., Zavriev S. K., Fauquet C. M. 2004; The new plant virus family Flexiviridae and assessment of molecular criteria for species demarcation. Arch Virol 149:1045–1060
    [Google Scholar]
  2. Bae H., Kim M. S., Sicher R. C., Bae H. J., Bailey B. A. 2006; Necrosis- and ethylene-inducing peptide from Fusarium oxysporum induces a complex cascade of transcripts associated with signal transduction and cell death in Arabidopsis . Plant Physiol 141:1056–1067
    [Google Scholar]
  3. Bamunusinghe D., Hemenway C. L., Nelson R. S., Sanderfoot A. A., Ye C. M., Silva M. A. T., Payton M., Verchot-Lubicz J. 2009; Analysis of potato virus X replicase and TGBp3 subcellular locations. Virology 393:272–285
    [Google Scholar]
  4. Baulcombe D. C., Chapman S., Santa Cruz S. 1995; Jellyfish green fluorescent protein as a reporter for virus infections. Plant J 7:1045–1053
    [Google Scholar]
  5. Beck D. L., Guilford P. J., Voot D. M., Andersen M. T., Forster R. L. 1991; Triple gene block proteins of white clover mosaic potexvirus are required for transport. Virology 183:695–702
    [Google Scholar]
  6. Boevink P., Oparka K. J. 2005; Virus–host interactions during movement processes. Plant Physiol 138:1815–1821
    [Google Scholar]
  7. Deng M., Bragg J. N., Ruzin S., Schichnes D., King D., Goodin M. M., Jackson A. O. 2007; Role of the Sonchus yellow net virus N protein in formation of nuclear viroplasms. J Virol 81:5362–5374
    [Google Scholar]
  8. Ding B. 1998; Intercellular protein trafficking through plasmodesmata. Plant Mol Biol 38:279–310
    [Google Scholar]
  9. Ding X., Shintaku M. H., Carter S. A., Nelson R. S. 1996; Invasion of minor veins of tobacco leaves inoculated with tobacco mosaic virus mutants defective in phloem-dependent movement. Proc Natl Acad Sci U S A 93:11155–11160
    [Google Scholar]
  10. Dolja V. V., Haldeman R., Robertson N. L., Dougherty W. G., Carrington J. C. 1994; Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. EMBO J 13:1482–1491
    [Google Scholar]
  11. Donald R. G., Zhou H., Jackson A. O. 1993; Serological analysis of barley stripe mosaic virus-encoded proteins in infected barley. Virology 195:659–668
    [Google Scholar]
  12. Emanuelsson O., Brunak S., von Heijne G., Nielsen H. 2007; Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971
    [Google Scholar]
  13. Geering A. D., Thomas J. E. 1999; Characterisation of a virus from Australia that is closely related to papaya mosaic potexvirus. Arch Virol 144:577–592
    [Google Scholar]
  14. Goodin M. M., Dietzgen R. G., Schichnes D., Ruzin S., Jackson A. O. 2002; pGD vectors: versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. Plant J 31:375–383
    [Google Scholar]
  15. Hammond J., Reinsel M. D., Maroon-Lango C. J. 2006; Identification and full sequence of an isolate of Alternanthera mosaic potexvirus infecting Phlox stolonifera . Arch Virol 151:477–493
    [Google Scholar]
  16. Haupt S., Cowan G. H., Ziegler A., Roberts A. G., Oparka K. J., Torrance L. 2005; Two plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell 17:164–181
    [Google Scholar]
  17. Haywood V., Kragler F., Lucas W. J. 2002; Plasmodesmata: pathways for protein and ribonucleoprotein signaling. Plant Cell 14:SupplS303–S325
    [Google Scholar]
  18. Ju H. J., Samuels T. D., Wang Y. S., Blancaflor E., Payton M., Mitra R., Krishnamurthy K., Nelson R. S., Verchot-Lubicz J. 2005; The potato virus X TGBp2 movement protein associates with endoplasmic reticulum-derived vesicles during virus infection. Plant Physiol 138:1877–1895
    [Google Scholar]
  19. Ju H. J., Ye C. M., Verchot-Lubicz J. 2008; Mutational analysis of PVX TGBp3 links subcellular accumulation and protein turnover. Virology 375:103–117
    [Google Scholar]
  20. Käll L., Krogh A., Sonnhammer E. L. L. 2004; A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036
    [Google Scholar]
  21. Käll L., Krogh A., Sonnhammer E. L. L. 2005; An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 21:Suppl. 1i251–i257
    [Google Scholar]
  22. Krishnamurthy K., Heppler M., Mitra R., Blancaflor E., Payton M., Nelson R. S., Verchot-Lubicz J. 2003; The potato virus X TGBp3 protein associates with the ER network for virus cell-to-cell movement. Virology 309:135–151
    [Google Scholar]
  23. Lauber E., Jonard G., Richards K., Guilley H. 2005; Nonregulated expression of TGBp3 of hordei-like viruses but not of potex-like viruses inhibits beet necrotic yellow vein virus cell-to-cell movement. Arch Virol 150:1459–1467
    [Google Scholar]
  24. Lawson R. H., Hearon S. S. 1974; Ultrastructure of carnation etched ring virus-infected Saponaria vaccaria and Dianthus caryophyllus . J Ultrastruct Res 48:201–215
    [Google Scholar]
  25. Leisner S. M., Howell S. H. 1993; Long-distance movement of viruses in plants. Trends Microbiol 1:314–317
    [Google Scholar]
  26. Lim H. S., Bragg J. N., Ganesan U., Lawrence D. M., Yu J., Isogai M., Hammond J., Jackson A. O. 2008; Triple gene block protein interactions involved in movement of barley stripe mosaic virus. J Virol 82:4991–5006
    [Google Scholar]
  27. Lim H. S., Bragg J. N., Ganesan U., Ruzin S., Schichnes D., Lee M. Y., Vaira A. M., Ryu K. H., Hammond J., Jackson A. O. 2009; Subcellular localization of the barley stripe mosaic virus triple gene block proteins. J Virol 83:9432–9448
    [Google Scholar]
  28. Lim H.-S., Vaira A. M., Reinsel M. D., Bae H., Bailey B. A., Domier L. L., Hammond J. 2010a; Localization of Alternanthera mosaic virus pathogenicity determinants to RdRp and TGB1, and separation of TGB1 silencing suppression from movement functions. J Gen Virol 91:277–287
    [Google Scholar]
  29. Lim H.-S., Vaira A. M., Domier L. L., Kim H. G., Hammond J. 2010b; Efficiency of VIGS and gene expression in a novel bipartite potexvirus vector delivery system as a function of strength of TGB1 silencing suppression. Virology 402:149–163
    [Google Scholar]
  30. Lin M. K., Hu C. C., Lin N. S., Chang B. Y., Hsu Y. H. 2006; Movement of potexviruses requires species-specific interactions among the cognate triple gene block proteins, as revealed by a trans -complementation assay based on the bamboo mosaic virus satellite RNA-mediated expression system. J Gen Virol 87:1357–1367
    [Google Scholar]
  31. Lough T. J., Lucas W. J. 2006; Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203–232
    [Google Scholar]
  32. Lough T. J., Shash K., Xoconostle-Cázares B., Hofstra K. R., Beck D. L., Balmori E., Forster R. L. S., Lucas W. J. 1998; Molecular dissection of the mechanism by which potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA. Mol Plant Microbe Interact 11:801–814
    [Google Scholar]
  33. Lough T. J., Netzler N. E., Emerson S. J., Sutherland P., Carr F., Beck D. L., Lucas W. J., Forster R. L. 2000; Cell-to-cell movement of potexviruses: evidence for a ribonucleoprotein complex involving the coat protein and first triple gene block protein. Mol Plant Microbe Interact 13:962–974
    [Google Scholar]
  34. Lough T. J., Lee R. H., Emerson S. J., Forster R. L., Lucas W. J. 2006; Functional analysis of the 5′ untranslated region of potexvirus RNA reveals a role in viral replication and cell-to-cell movement. Virology 351:455–465
    [Google Scholar]
  35. Lucas W. J. 2006; Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344:169–184
    [Google Scholar]
  36. Lucas W. J., Yoo B. C., Kragler F. 2001; RNA as a long-distance information macromolecule in plants. Nat Rev Mol Cell Biol 2:849–857
    [Google Scholar]
  37. Marchler-Bauer A., Anderson J. B., Derbyshire M. K., DeWeese-Scott C., Gonzales N. R., Gwadz M., Hao L., He S., Hurwitz D. I. other authors 2007; CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35:D237–D240
    [Google Scholar]
  38. Morozov S. Yu., Solovyev A. G. 2003; Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 84:1351–1366
    [Google Scholar]
  39. Morozov S. Yu., Miroshnichenko N. A., Solovyev A. G., Zelenina D. A., Fedorkin O. N., Lukasheva L. I., Grachev S. A., Chernov B. K. 1991; In vitro membrane binding of the translation products of the carlavirus 7-kDa protein genes. Virology 183:782–785
    [Google Scholar]
  40. Morozov S. Yu., Fedorkin O. N., Jüttner G., Schiemann J., Baulcombe D. C., Atabekov J. G. 1997; Complementation of a potato virus X mutant mediated by bombardment of plant tissues with cloned viral movement protein genes. J Gen Virol 78:2077–2083
    [Google Scholar]
  41. Petty I. T., Hunter B. G., Wei N., Jackson A. O. 1989; Infectious barley stripe mosaic virus RNA transcribed in vitro from full-length genomic cDNA clones. Virology 171:342–349
    [Google Scholar]
  42. Prod'homme D., Jakubiec A., Tournier V., Drugeon G., Jupin I. 2003; Targeting of the turnip yellow mosaic virus 66K replication protein to the chloroplast envelope is mediated by the 140K protein. J Virol 77:9124–9135
    [Google Scholar]
  43. Rubino L., Russo M. 1998; Membrane targeting sequences in tombusvirus infections. Virology 252:431–437
    [Google Scholar]
  44. Sakaguchi M., Tomiyoshi R., Kuroiwa T., Mihara K., Omura T. 1992; Functions of signal and signal-anchor sequences are determined by the balance between the hydrophobic segment and the N-terminal charge. Proc Natl Acad Sci U S A 89:16–19
    [Google Scholar]
  45. Samuels T. D., Ju H. J., Ye C. M., Motes C. M., Blancaflor E. B., Verchot-Lubicz J. 2007; Subcellular targeting and interactions among the potato virus X TGB proteins. Virology 367:375–389
    [Google Scholar]
  46. Schepetilnikov M. V., Manske U., Solovyev A. G., Zamyatnin A. A., Schiemann J. Jr, Morozov S. Y. 2005; The hydrophobic segment of potato virus X TGBp3 is a major determinant of the protein intracellular trafficking. J Gen Virol 86:2379–2391
    [Google Scholar]
  47. Solovyev A. G., Stroganova T. A., Zamyatnin A. A. Jr, Fedorkin O. N., Schiemann J., Morozov S. Y. 2000; Subcellular sorting of small membrane-associated triple gene block proteins: TGBp3-assisted targeting of TGBp2. Virology 269:113–127
    [Google Scholar]
  48. Tamai A., Meshi T. 2001; Tobamoviral movement protein transiently expressed in a single epidermal cell functions beyond multiple plasmodesmata and spreads multicellularly in an infection-coupled manner. Mol Plant Microbe Interact 14:126–134
    [Google Scholar]
  49. Torrance L., Cowan G. H., Gillespie T., Ziegler A., Lacomme C. 2006; Barley stripe mosaic virus-encoded proteins triple-gene block 2 and γ b localize to chloroplasts in virus-infected monocot and dicot plants, revealing hitherto-unknown roles in virus replication. J Gen Virol 87:2403–2411
    [Google Scholar]
  50. Verchot-Lubicz J. 2005; A new cell-to-cell transport model for potexviruses. Mol Plant Microbe Interact 18:283–290
    [Google Scholar]
  51. Verchot-Lubicz J., Ye C. M., Bamunusinghe D. 2007; Molecular biology of potexviruses: recent advances. J Gen Virol 88:1643–1655
    [Google Scholar]
  52. von Heijne G. 1988; Transcending the impenetrable: how proteins come to terms with membranes. Biochim Biophys Acta 947:307–333
    [Google Scholar]
  53. Waigmann E., Ueki S., Trutnyeva K. 2004; The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses. CRC Crit Rev Plant Sci 23:195–250
    [Google Scholar]
  54. Wurch T., Lestienne F., Pauwels P. 1998; A modified overlap extension PCR method to create chimeric genes in the absence of restriction enzymes. Biotechnol Tech 12:653–657
    [Google Scholar]
  55. Xiong Z., Kim K. H., Giesman-Cookmeyer D., Lommel S. A. 1993; The roles of the red clover necrotic mosaic virus capsid and cell-to-cell movement proteins in systemic infection. Virology 192:27–32
    [Google Scholar]
  56. Zhu Y., Green L., Woo Y.-M., Owens R. A., Ding B. 2001; Cellular basis of potato spindle tuber viroid systemic movement. Virology 279:69–77
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.019448-0
Loading
/content/journal/jgv/10.1099/vir.0.019448-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error