1887

Abstract

To analyse the phenotype of Epstein–Barr virus (EBV)-infected lymphocytes in EBV-associated infections, cells from eight haematopoietic stem cell/liver transplantation recipients with elevated EBV viral loads were examined by a novel quantitative assay designed to identify EBV-infected cells by using a flow cytometric detection of fluorescent hybridization (FISH) assay. By this assay, 0.05–0.78 % of peripheral blood lymphocytes tested positive for EBV, and the EBV-infected cells were CD20 B-cells in all eight patients. Of the CD20 EBV-infected lymphocytes, 48–83 % of cells tested IgD positive and 49–100 % of cells tested CD27 positive. Additionally, the number of EBV-infected cells assayed by using FISH was significantly correlated with the EBV-DNA load, as determined by real-time PCR (  = 0.88, <0.0001). The FISH assay enabled us to characterize EBV-infected cells and perform a quantitative analysis in patients with EBV infection after stem cell/liver transplantation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.033712-0
2011-11-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/11/2590.html?itemId=/content/journal/jgv/10.1099/vir.0.033712-0&mimeType=html&fmt=ahah

References

  1. Adams A., Lindahl T. 1975; Epstein-Barr virus genomes with properties of circular DNA molecules in carrier cells. Proc Natl Acad Sci U S A 72:1477–1481 [View Article][PubMed]
    [Google Scholar]
  2. Agematsu K., Nagumo H., Yang F. C., Nakazawa T., Fukushima K., Ito S., Sugita K., Mori T., Kobata T. et al. 1997; B cell subpopulations separated by CD27 and crucial collaboration of CD27+ B cells and helper T cells in immunoglobulin production. Eur J Immunol 27:2073–2079 [View Article][PubMed]
    [Google Scholar]
  3. Alfieri C., Birkenbach M., Kieff E. 1991; Early events in Epstein-Barr virus infection of human B lymphocytes. Virology 181:595–608 [View Article][PubMed]
    [Google Scholar]
  4. Arribas J. R., Clifford D. B., Fichtenbaum C. J., Roberts R. L., Powderly W. G., Storch G. A. 1995; Detection of Epstein-Barr virus DNA in cerebrospinal fluid for diagnosis of AIDS-related central nervous system lymphoma. J Clin Microbiol 33:1580–1583[PubMed]
    [Google Scholar]
  5. Babcock G. J., Decker L. L., Volk M., Thorley-Lawson D. A. 1998; EBV persistence in memory B cells in vivo . Immunity 9:395–404 [View Article][PubMed]
    [Google Scholar]
  6. Bingler M. A., Feingold B., Miller S. A., Quivers E., Michaels M. G., Green M., Wadowsky R. M., Rowe D. T., Webber S. A. 2008; Chronic high Epstein-Barr viral load state and risk for late-onset posttransplant lymphoproliferative disease/lymphoma in children. Am J Transplant 8:442–445 [View Article][PubMed]
    [Google Scholar]
  7. Calattini S., Sereti I., Scheinberg P., Kimura H., Childs R. W., Cohen J. I. 2010; Detection of EBV genomes in plasmablasts/plasma cells and non-B cells in the blood of most patients with EBV lymphoproliferative disorders by using immuno-FISH. Blood 116:4546–4559 [View Article][PubMed]
    [Google Scholar]
  8. D’Antiga L., Del Rizzo M., Mengoli C., Cillo U., Guariso G., Zancan L. 2007; Sustained Epstein–Barr virus detection in paediatric liver transplantation. Insights into the occurrence of late PTLD. Liver Transpl 13:343–348 [View Article][PubMed]
    [Google Scholar]
  9. Douek D. C., Vescio R. A., Betts M. R., Brenchley J. M., Hill B. J., Zhang L., Berenson J. R., Collins R. H., Koup R. A. 2000; Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T-cell reconstitution. Lancet 355:1875–1881 [View Article][PubMed]
    [Google Scholar]
  10. Gotoh K., Ito Y., Ohta R., Iwata S., Nishiyama Y., Nakamura T., Kaneko K., Kiuchi T., Ando H., Kimura H. 2010; Immunologic and virologic analyses in pediatric liver transplant recipients with chronic high Epstein–Barr virus loads. J Infect Dis 202:461–469 [View Article][PubMed]
    [Google Scholar]
  11. Green M., Soltys K., Rowe D. T., Webber S. A., Mazareigos G. 2009; Chronic high Epstein–Barr viral load carriage in pediatric liver transplant recipients. Pediatr Transplant 13:319–323 [View Article][PubMed]
    [Google Scholar]
  12. Hochberg D., Souza T., Catalina M., Sullivan J. L., Luzuriaga K., Thorley-Lawson D. A. 2004; Acute infection with Epstein-Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J Virol 78:5194–5204 [View Article][PubMed]
    [Google Scholar]
  13. Kimura H., Morita M., Yabuta Y., Kuzushima K., Kato K., Kojima S., Matsuyama T., Morishima T. 1999; Quantitative analysis of Epstein–Barr virus load by using a real-time PCR assay. J Clin Microbiol 37:132–136[PubMed]
    [Google Scholar]
  14. Kimura H., Miyake K., Yamauchi Y., Nishiyama K., Iwata S., Iwatsuki K., Gotoh K., Kojima S., Ito Y., Nishiyama Y. 2009; Identification of Epstein–Barr virus (EBV)-infected lymphocyte subtypes by flow cytometric in situ hybridization in EBV-associated lymphoproliferative diseases. J Infect Dis 200:1078–1087 [View Article][PubMed]
    [Google Scholar]
  15. Klein U., Rajewsky K., Küppers R. 1998; Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med 188:1679–1689 [View Article][PubMed]
    [Google Scholar]
  16. Kurth J., Spieker T., Wustrow J., Strickler G. J., Hansmann L. M., Rajewsky K., Küppers R. 2000; EBV-infected B cells in infectious mononucleosis: viral strategies for spreading in the B cell compartment and establishing latency. Immunity 13:485–495 [View Article][PubMed]
    [Google Scholar]
  17. Rickinson A. B., Kieff E. 2006; Epstein-Barr virus. In Fields Virology, 5th edn. pp. 2655–2700 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  18. Rose C., Green M., Webber S., Kingsley L., Day R., Watkins S., Reyes J., Rowe D. 2002; Detection of Epstein–Barr virus genomes in peripheral blood B cells from solid-organ transplant recipients by fluorescence in situ hybridization. J Clin Microbiol 40:2533–2544 [View Article][PubMed]
    [Google Scholar]
  19. Storek J., Ferrara S., Ku N., Giorgi J. V., Champlin R. E., Saxon A. 1993; B cell reconstitution after human bone marrow transplantation: recapitulation of ontogeny?. Bone Marrow Transplant 12:387–398[PubMed]
    [Google Scholar]
  20. Storek J., Wells D., Dawson M. A., Storer B., Maloney D. G. 2001; Factors influencing B lymphopoiesis after allogeneic hematopoietic cell transplantation. Blood 98:489–491 [View Article][PubMed]
    [Google Scholar]
  21. Thorley-Lawson D. A., Gross A. 2004; Persistence of the Epstein–Barr virus and the origins of associated lymphomas. N Engl J Med 350:1328–1337 [View Article][PubMed]
    [Google Scholar]
  22. Wada K., Kubota N., Ito Y., Yagasaki H., Kato K., Yoshikawa T., Ono Y., Ando H., Fujimoto Y. et al. 2007; Simultaneous quantification of Epstein–Barr virus, cytomegalovirus, and human herpesvirus 6 DNA in samples from transplant recipients by multiplex real-time PCR assay. J Clin Microbiol 45:1426–1432 [View Article][PubMed]
    [Google Scholar]
  23. Yoshida T., Mei H., Dörner T., Hiepe F., Radbruch A., Fillatreau S., Hoyer B. F. 2010; Memory B and memory plasma cells. Immunol Rev 237:117–139 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.033712-0
Loading
/content/journal/jgv/10.1099/vir.0.033712-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error