1887

Abstract

nucleopolyhedrovirus (BmNPV) triggers the global shutdown of host silkworm gene expression and protein synthesis approximately 12–18 h post-infection. Genome sequence analysis suggests that BmNPV ORF75 could be a flavin adenine dinucleotide (FAD)-linked thiol oxidase essential for virion assembly and virus propagation. Here, we report the crystal structure of BmNPV ORF75 at 2.1 Å (0.21 nm). The structure of BmNPV ORF75 resembles that of the thiol oxidase domain of human quiescin thiol oxidase (QSOX), displaying a pseudo-dimer of canonical and non-canonical thiol oxidase domains. However, BmNPV ORF75 is further dimerized by its C-terminal canonical thiol oxidase domain. Within the unique quaternary structural arrangement, the FAD-binding pocket and the characteristic CXXC motif from each monomer is 35 Å (3.5 nm) away from that of its corresponding molecule, which suggests that BmNPV ORF75 might adopt a deviant mechanism from that of QSOX to catalyse disulfide bond formation. Our thiol oxidase activity assay on the point mutations of the conserved residues participating in FAD recognition reveals an aromatic cage next to the FAD isoalloxazine moiety for substrate binding. These data suggest that the thiol oxidase activity of BmNPV ORF75 could be critical to catalyse the formation of the disulfide bonds of certain BmNPV proteins essential for BmNPV virion assembly.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.042747-0
2012-10-01
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/10/2142.html?itemId=/content/journal/jgv/10.1099/vir.0.042747-0&mimeType=html&fmt=ahah

References

  1. Alon A., Heckler E. J., Thorpe C., Fass D. 2010; QSOX contains a pseudo-dimer of functional and degenerate sulfhydryl oxidase domains. FEBS Lett 584:1521–1525 [View Article][PubMed]
    [Google Scholar]
  2. Belyavskyi M., Braunagel S. C., Summers M. D. 1998; The structural protein ODV-EC27 of Autographa californica nucleopolyhedrovirus is a multifunctional viral cyclin. Proc Natl Acad Sci U S A 95:11205–11210 [View Article][PubMed]
    [Google Scholar]
  3. Braunagel S. C., Russell W. K., Rosas-Acosta G., Russell D. H., Summers M. D. 2003; Determination of the protein composition of the occlusion-derived virus of Autographa californica nucleopolyhedrovirus. Proc Natl Acad Sci U S A 100:9797–9802 [View Article][PubMed]
    [Google Scholar]
  4. Changela A., Martins A., Shuman S., Mondragón A. 2005; Crystal structure of baculovirus RNA triphosphatase complexed with phosphate. J Biol Chem 280:17848–17856 [View Article][PubMed]
    [Google Scholar]
  5. Collaborative Computational Project, Number 4 1994; The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760–763 [View Article][PubMed]
    [Google Scholar]
  6. dela Cruz W. P., Friesen P. D., Fisher A. J. 2001; Crystal structure of baculovirus P35 reveals a novel conformational change in the reactive site loop after caspase cleavage. J Biol Chem 276:32933–32939 [View Article][PubMed]
    [Google Scholar]
  7. Doublié S. 1997; Preparation of selenomethionyl proteins for phase determination. Methods Enzymol 276:523–530 [View Article][PubMed]
    [Google Scholar]
  8. Frand A. R., Kaiser C. A. 1999; Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol Cell 4:469–477 [View Article][PubMed]
    [Google Scholar]
  9. Gomi S., Majima K., Maeda S. 1999; Sequence analysis of the genome of Bombyx mori nucleopolyhedrovirus. J Gen Virol 80:1323–1337[PubMed]
    [Google Scholar]
  10. Gross E., Sevier C. S., Vala A., Kaiser C. A., Fass D. 2002; A new FAD-binding fold and intersubunit disulfide shuttle in the thiol oxidase Erv2p. Nat Struct Biol 9:61–67 [View Article][PubMed]
    [Google Scholar]
  11. Hakim M., Mandelbaum A., Fass D. 2011; Structure of a baculovirus sulfhydryl oxidase, a highly divergent member of the Erv flavoenzyme family. J Virol 85:9406–9413 [View Article][PubMed]
    [Google Scholar]
  12. Heckler E. J., Alon A., Fass D., Thorpe C. 2008; Human quiescin-sulfhydryl oxidase, QSOX1: probing internal redox steps by mutagenesis. Biochemistry 47:4955–4963 [View Article][PubMed]
    [Google Scholar]
  13. Hofhaus G., Lisowsky T. 2002; Sulfhydryl oxidases as factors for mitochondrial biogenesis. Methods Enzymol 348:314–324
    [Google Scholar]
  14. Ji X. Y., Sutton G., Evans G., Axford D., Owen R., Stuart D. I. 2010; How baculovirus polyhedra fit square pegs into round holes to robustly package viruses. EMBO J 29:505–514 [View Article][PubMed]
    [Google Scholar]
  15. Johnson M. L., Correia J. J., Yphantis D. A., Halvorson H. R. 1981; Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys J 36:575–588 [View Article][PubMed]
    [Google Scholar]
  16. Jones T. A., Bergdoll M., Kjeldgaard M. O. 1990 O: a Macromolecule Modeling Environment pp. 189–199 Edited by Bugg C., Ealick S. New York: Springer-Verlag;
    [Google Scholar]
  17. Kadlec J., Loureiro S., Abrescia N. G., Stuart D. I., Jones I. M. 2008; The postfusion structure of baculovirus gp64 supports a unified view of viral fusion machines. Nat Struct Mol Biol 15:1024–1030 [View Article][PubMed]
    [Google Scholar]
  18. Katsuma S., Mita K., Shimada T. 2007; ERK- and JNK-dependent signaling pathways contribute to Bombyx mori nucleopolyhedrovirus infection. J Virol 81:13700–13709 [View Article][PubMed]
    [Google Scholar]
  19. Long C. M., Rohrmann G. F., Merrill G. F. 2009; The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase. Virology 388:231–235 [View Article][PubMed]
    [Google Scholar]
  20. Lu A., Miller L. K. 1995; Differential requirements for baculovirus late expression factor genes in two cell lines. J Virol 69:6265–6272[PubMed]
    [Google Scholar]
  21. Nie Y., Fang M., Theilmann D. A. 2011; Autographa californica multiple nucleopolyhedrovirus core gene ac92 (p33) is required for efficient budded virus production. Virology 409:38–45 [View Article][PubMed]
    [Google Scholar]
  22. Olszewski J., Miller L. K. 1997; Identification and characterization of a baculovirus structural protein, VP1054, required for nucleocapsid formation. J Virol 71:5040–5050[PubMed]
    [Google Scholar]
  23. Otwinowski Z., Minor W. 1997 Processing of X-ray Diffraction Data Collected in Oscillation Mode New York: Academic Press;
    [Google Scholar]
  24. Rodríguez I., Redrejo-Rodríguez M., Rodríguez J. M., Alejo A., Salas J., Salas M. L. 2006; African swine fever virus pB119L protein is a flavin adenine dinucleotide-linked sulfhydryl oxidase. J Virol 80:3157–3166 [View Article][PubMed]
    [Google Scholar]
  25. Rohrmann G. F.(editor) ( 2011 Baculovirus Molecular Biology Bethesda, MD: National Center for Biotechnology Information;
    [Google Scholar]
  26. Schuck P. 2000; Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78:1606–1619 [View Article][PubMed]
    [Google Scholar]
  27. Unger T., Jacobovitch Y., Dantes A., Bernheim R., Peleg Y. 2010; Applications of the restriction free (RF) cloning procedure for molecular manipulations and protein expression. J Struct Biol 172:34–44 [View Article][PubMed]
    [Google Scholar]
  28. Vitu E., Bentzur M., Lisowsky T., Kaiser C. A., Fass D. 2006; Gain of function in an ERV/ALR sulfhydryl oxidase by molecular engineering of the shuttle disulfide. J Mol Biol 362:89–101 [View Article][PubMed]
    [Google Scholar]
  29. Vonrhein C., Blanc E., Roversi P., Bricogne G. 2007; Automated structure solution with autoSHARP. Methods Mol Biol 364:215–230[PubMed]
    [Google Scholar]
  30. Willis L. G., Siepp R., Stewart T. M., Erlandson M. A., Theilmann D. A. 2005; Sequence analysis of the complete genome of Trichoplusia ni single nucleopolyhedrovirus and the identification of a baculoviral photolyase gene. Virology 338:209–226 [View Article][PubMed]
    [Google Scholar]
  31. Wu W., Passarelli A. L. 2010; Autographa californica multiple nucleopolyhedrovirus Ac92 (ORF92, P33) is required for budded virus production and multiply enveloped occlusion-derived virus formation. J Virol 84:12351–12361 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.042747-0
Loading
/content/journal/jgv/10.1099/vir.0.042747-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error