1887

Abstract

Human coronavirus (HCoV) is a causative agent of the common cold. Although HCoV is highly prevalent in the world, studies of the genomic and antigenic details of circulating HCoV strains have been limited. In this study, we compared four Japanese isolates with the standard HCoV-229E strain obtained from ATCC (ATCC-VR740) by focusing on the spike (S) protein, a major determinant of neutralizing antigen and pathogenicity. The isolates were found to have nucleotide deletions and a number of sequence differences in the S1 region of the S protein. We compared two of the Japanese isolates with the ATCC-VR740 strain by using virus-neutralizing assays consisting of infectious HCoV-229E particles and vesicular stomatitis virus (VSV)-pseudotyped virus carrying the HCoV-229E S protein. The two clinical isolates (Sendai-H/1121/04 and Niigata/01/08) did not react with antiserum to the ATCC-VR740 strain via the neutralizing test. We then constructed a pseudotype VSV-harboured chimeric S protein with the ATCC S1 and Sendai S2 regions or that with Sendai S1 and ATCC S2 regions and compared them by a neutralization test. The results revealed that the difference in the neutralizing antigenicity depends on the S1 region. This different antigenic phenotype was also confirmed by a neutralizing test with clinically isolated human sera. These results suggest that the HCoV-229E viruses prevalent in Japan are quite different from the laboratory strain ATCC-VR740 in terms of the S sequence and neutralization antigenicity, which is attributed to the difference in the S1 region.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.043117-0
2012-09-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/9/1908.html?itemId=/content/journal/jgv/10.1099/vir.0.043117-0&mimeType=html&fmt=ahah

References

  1. Bonavia A., Zelus B. D., Wentworth D. E., Talbot P. J., Holmes K. V. 2003; Identification of a receptor-binding domain of the spike glycoprotein of human coronavirus HCoV-229E. J Virol 77:2530–2538 [View Article][PubMed]
    [Google Scholar]
  2. Cavanagh D., Davis P. J., Darbyshire J. H., Peters R. W. 1986; Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection. J Gen Virol 67:1435–1442 [View Article][PubMed]
    [Google Scholar]
  3. Chibo D., Birch C. 2006; Analysis of human coronavirus 229E spike and nucleoprotein genes demonstrates genetic drift between chronologically distinct strains. J Gen Virol 87:1203–1208 [View Article][PubMed]
    [Google Scholar]
  4. DePolo N. J., Reed J. D., Sheridan P. L., Townsend K., Sauter S. L., Jolly D. J., Dubensky T. W. Jr 2000; VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum. Mol Ther 2:218–222 [View Article][PubMed]
    [Google Scholar]
  5. Dijkman R., Jebbink M. F., El Idrissi N. B., Pyrc K., Müller M. A., Kuijpers T. W., Zaaijer H. L., van der Hoek L. 2008; Human coronavirus NL63 and 229E seroconversion in children. J Clin Microbiol 46:2368–2373 [View Article][PubMed]
    [Google Scholar]
  6. Fukushi S., Mizutani T., Saijo M., Matsuyama S., Miyajima N., Taguchi F., Itamura S., Kurane I., Morikawa S. 2005; Vesicular stomatitis virus pseudotyped with severe acute respiratory syndrome coronavirus spike protein. J Gen Virol 86:2269–2274 [View Article][PubMed]
    [Google Scholar]
  7. Godet M., Grosclaude J., Delmas B., Laude H. 1994; Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J Virol 68:8008–8016[PubMed]
    [Google Scholar]
  8. Hamre D., Procknow J. J. 1966; A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med 121:190–193[PubMed] [CrossRef]
    [Google Scholar]
  9. Hirokawa C., Watanabe K., Kon M., Tamura T., Nishikawa M. 2008; Isolation of a virus closely related to human coronavirus 229E from a case of pharyngitis, March 2008-Niigata. Infectious Agents Surveillance Report 29:283 (in Japanese)
    [Google Scholar]
  10. Holmes K. V., Compton S. R. 1995; Coronavirus receptors. In The Coronaviridae pp. 55–71 Edited by Siddell S. G. New York: Plenum Press; [CrossRef]
    [Google Scholar]
  11. Ishii K., Hasegawa H., Nagata N., Ami Y., Fukushi S., Taguchi F., Tsunetsugu-Yokota Y. 2009; Neutralizing antibody against severe acute respiratory syndrome (SARS)-coronavirus spike is highly effective for the protection of mice in the murine SARS model. Microbiol Immunol 53:75–82 [View Article][PubMed]
    [Google Scholar]
  12. Kawase M., Shirato K., Matsuyama S., Taguchi F. 2009; Protease-mediated entry via the endosome of human coronavirus 229E. J Virol 83:712–721 [View Article][PubMed]
    [Google Scholar]
  13. Kubo H., Takase-Yoden S., Taguchi F. 1993; Neutralization and fusion inhibition activities of monoclonal antibodies specific for the S1 subunit of the spike protein of neurovirulent murine coronavirus JHMV c1-2 variant. J Gen Virol 74:1421–1425 [View Article][PubMed]
    [Google Scholar]
  14. Kubo H., Yamada Y. K., Taguchi F. 1994; Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J Virol 68:5403–5410[PubMed]
    [Google Scholar]
  15. Lai M. M. 1990; Coronavirus: organization, replication and expression of genome. Annu Rev Microbiol 44:303–333 [View Article][PubMed]
    [Google Scholar]
  16. Lai M. M., Cavanagh D. 1997; The molecular biology of coronaviruses. Adv Virus Res 48:1–100 [View Article][PubMed]
    [Google Scholar]
  17. Lamarre A., Talbot P. J. 1995; Protection from lethal coronavirus infection by immunoglobulin fragments. J Immunol 154:3975–3984[PubMed]
    [Google Scholar]
  18. Madu I. G., Roth S. L., Belouzard S., Whittaker G. R. 2009; Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide. J Virol 83:7411–7421 [View Article][PubMed]
    [Google Scholar]
  19. Matsuyama S., Ujike M., Morikawa S., Tashiro M., Taguchi F. 2005; Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc Natl Acad Sci U S A 102:12543–12547 [View Article][PubMed]
    [Google Scholar]
  20. Mills B. J., Cooper N. R. 1978; Antibody-independent neutralization of vesicular stomatitis virus by human complement. I. Complement requirements. J Immunol 121:1549–1557[PubMed]
    [Google Scholar]
  21. Mills B. J., Beebe D. P., Cooper N. R. 1979; Antibody-independent neutralization of vesicular stomatitis virus by human complement. II. Formation of VSV-lipoprotein complexes in human serum and complement-dependent viral lysis. J Immunol 123:2518–2524[PubMed]
    [Google Scholar]
  22. Niesters H. G., Kusters J. G., Lenstra J. A., Spaan W. J., Horzined M. C., van der Zeijst B. A. 1987; The neutralization epitopes on the spike protein of infectious bronchitis virus and their antigenic variation. Adv Exp Med Biol 218:483–492 [View Article][PubMed]
    [Google Scholar]
  23. Peiris J. S., Guan Y., Yuen K. Y. 2004; Severe acute respiratory syndrome. Nat Med 10:Suppl.S88–S97 [View Article][PubMed]
    [Google Scholar]
  24. Qiu Z., Hingley S. T., Simmons G., Yu C., Das Sarma J., Bates P., Weiss S. R. 2006; Endosomal proteolysis by cathepsins is necessary for murine coronavirus mouse hepatitis virus type 2 spike-mediated entry. J Virol 80:5768–5776 [View Article][PubMed]
    [Google Scholar]
  25. Rockx B., Donaldson E., Frieman M., Sheahan T., Corti D., Lanzavecchia A., Baric R. S. 2010; Escape from human monoclonal antibody neutralization affects in vitro and in vivo fitness of severe acute respiratory syndrome coronavirus. J Infect Dis 201:946–955 [View Article][PubMed]
    [Google Scholar]
  26. Sayaka T.-Y., Tateki K., Siddell S. G., Taguchi F. 1991; Localization of major neutralizing epitopes on the S1 polypeptide of the murine coronavirus peplomer glycoprotein. Virus Res 18:99–107 [View Article][PubMed]
    [Google Scholar]
  27. Simmons G., Reeves J. D., Rennekamp A. J., Amberg S. M., Piefer A. J., Bates P. 2004; Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A 101:4240–4245 [View Article][PubMed]
    [Google Scholar]
  28. Spaan W., Cavanagh D., Horzinek M. C. 1988; Coronaviruses: structure and genome expression. J Gen Virol 69:2939–2952 [View Article][PubMed]
    [Google Scholar]
  29. Sturman L. S., Ricard C. S., Holmes K. V. 1985; Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J Virol 56:904–911[PubMed]
    [Google Scholar]
  30. Sui J., Li W., Murakami A., Tamin A., Matthews L. J., Wong S. K., Moore M. J., Tallarico A. S., Olurinde M. other authors 2004; Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci U S A 101:2536–2541 [View Article][PubMed]
    [Google Scholar]
  31. Takada A., Robison C., Goto H., Sanchez A., Murti K. G., Whitt M. A., Kawaoka Y. 1997; A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 94:14764–14769 [View Article][PubMed]
    [Google Scholar]
  32. Tamura K., Dudley J., Nei M., Kumar S. 2007; MEGA4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 Menneigline [View Article][PubMed]
    [Google Scholar]
  33. van der Hoek L., Pyrc K., Jebbink M. F., Vermeulen-Oost W., Berkhout R. J., Wolthers K. C., Wertheim-van Dillen P. M., Kaandorp J., Spaargaren J., Berkhout B. 2004; Identification of a new human coronavirus. Nat Med 10:368–373 [View Article][PubMed]
    [Google Scholar]
  34. Woo P. C., Lau S. K., Chu C. M., Chan K. H., Tsoi H. W., Huang Y., Wong B. H., Poon R. W., Cai J. J. other authors 2005; Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 79:884–895 [View Article][PubMed]
    [Google Scholar]
  35. Yamada Y. K., Takimoto K., Yabe M., Taguchi F. 1997; Acquired fusion activity of a murine coronavirus MHV-2 variant with mutations in the proteolytic cleavage site and the signal sequence of the S protein. Virology 227:215–219 [View Article][PubMed]
    [Google Scholar]
  36. Yoshikawa T., Hill T. E., Yoshikawa N., Popov V. L., Galindo C. L., Garner H. R., Peters C. J., Tseng C. T. 2010; Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection. PLoS ONE 5:e8729 [View Article][PubMed]
    [Google Scholar]
  37. Yoshikura H., Tejima S. 1981; Role of protease in mouse hepatitis virus-induced cell fusion. Studies with a cold-sensitive mutant isolated from a persistent infection. Virology 113:503–511 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.043117-0
Loading
/content/journal/jgv/10.1099/vir.0.043117-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error