1887

Abstract

Previous work by our group showed that human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) containing non-nucleoside RT inhibitor (NNRTI) drug resistance mutations has defects in RNase H activity as well as reduced amounts of RT protein in virions. These deficits correlate with replication fitness in the absence of NNRTIs. Viruses with the mutant combination K101E+G190S replicated better in the presence of NNRTIs than in the absence of drug. Stimulation of virus growth by NNRTIs occurred during the early steps of the virus life cycle and was modulated by the RT backbone sequence in which the resistance mutations arose. We wanted to determine what effects RT backbone sequence would have on RT content and polymerization and RNase H activities in the absence of NNRTIs. We compared a NL4-3 RT with K101E+G190S to a patient-isolate RT sequence D10 with K101E+G190S. We show here that, unlike the NL4-3 backbone, the D10 backbone sequence decreased the RNA-dependent DNA polymerization activity of purified recombinant RT compared to WT. In contrast, RTs with the D10 backbone had increased RNase H activity compared to WT and K101E+G190S in the NL4-3 backbone. D10 virions also had increased amounts of RT compared to K101E+G190S in the NL4-3 backbone. We conclude that the backbone sequence of RT can alter the activities of the NNRTI drug-resistant mutant K101E+G190S, and that identification of the amino acids responsible will aid in understanding the mechanism by which NNRTI drug-resistant mutants alter fitness and NNRTIs stimulate HIV-1 virus replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.054999-0
2013-10-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/10/2297.html?itemId=/content/journal/jgv/10.1099/vir.0.054999-0&mimeType=html&fmt=ahah

References

  1. Archer R. H., Dykes C., Gerondelis P., Lloyd A., Fay P., Reichman R. C., Bambara R. A., Demeter L. M. 2000; Mutants of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase resistant to nonnucleoside reverse transcriptase inhibitors demonstrate altered rates of RNase H cleavage that correlate with HIV-1 replication fitness in cell culture. J Virol 74:8390–8401 [View Article][PubMed]
    [Google Scholar]
  2. Archer R. H., Wisniewski M., Bambara R. A., Demeter L. M. 2001; The Y181C mutant of HIV-1 reverse transcriptase resistant to nonnucleoside reverse transcriptase inhibitors alters the size distribution of RNase H cleavages. Biochemistry 40:4087–4095 [View Article][PubMed]
    [Google Scholar]
  3. Armstrong K. L., Lee T. H., Essex M. 2009; Replicative capacity differences of thymidine analog resistance mutations in subtype B and C human immunodeficiency virus type 1. J Virol 83:4051–4059 [View Article][PubMed]
    [Google Scholar]
  4. Beilhartz G. L., Götte M. 2010; HIV-1 ribonuclease H: structure, catalytic mechanism and inhibitors. Viruses 2:900–926 [View Article][PubMed]
    [Google Scholar]
  5. Betancor G., Puertas M. C., Nevot M., Garriga C., Martínez M. A., Martinez-Picado J., Menéndez-Arias L. 2010; Mechanisms involved in the selection of HIV-1 reverse transcriptase thumb subdomain polymorphisms associated with nucleoside analogue therapy failure. Antimicrob Agents Chemother 54:4799–4811 [View Article][PubMed]
    [Google Scholar]
  6. Betancor G., Garriga C., Puertas M. C., Nevot M., Anta L., Blanco J. L., Pérez-Elías M. J., de Mendoza C., Martínez M. A. other authors 2012; Clinical, virological and biochemical evidence supporting the association of HIV-1 reverse transcriptase polymorphism R284K and thymidine analogue resistance mutations M41L, L210W and T215Y in patients failing tenofovir/emtricitabine therapy. Retrovirology 9:68 [View Article][PubMed]
    [Google Scholar]
  7. Bukrinsky M. I., Sharova N., McDonald T. L., Pushkarskaya T., Tarpley W. G., Stevenson M. 1993; Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc Natl Acad Sci U S A 90:6125–6129 [View Article][PubMed]
    [Google Scholar]
  8. Ceccherini-Silberstein F., Cozzi-Lepri A., Ruiz L., Mocroft A., Phillips A. N., Olsen C. H., Gatell J. M., Gunthard H. F., Reiss P. other authors 2007; Impact of HIV-1 reverse transcriptase polymorphism F214L on virological response to thymidine analogue-based regimens in antiretroviral therapy (ART)-naive and ART-experienced patients. J Infect Dis 196:1180–1190 [View Article][PubMed]
    [Google Scholar]
  9. Chesebro B., Wehrly K., Nishio J., Perryman S. 1992; Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism. J Virol 66:6547–6554[PubMed]
    [Google Scholar]
  10. Chung S., Miller J. T., Johnson B. C., Hughes S. H., Le Grice S. F. 2012; Mutagenesis of human immunodeficiency virus reverse transcriptase p51 subunit defines residues contributing to vinylogous urea inhibition of ribonuclease H activity. J Biol Chem 287:4066–4075 [View Article][PubMed]
    [Google Scholar]
  11. Coffin J. M. Cold Spring Harbor Laboratory Press 2002 Retroviruses Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  12. Cornelissen M., van den Burg R., Zorgdrager F., Lukashov V., Goudsmit J. 1997; pol gene diversity of five human immunodeficiency virus type 1 subtypes: evidence for naturally occurring mutations that contribute to drug resistance, limited recombination patterns, and common ancestry for subtypes B and D. J Virol 71:6348–6358[PubMed]
    [Google Scholar]
  13. Curr K., Tripathi S., Lennerstrand J., Larder B. A., Prasad V. R. 2006; Influence of naturally occurring insertions in the fingers subdomain of human immunodeficiency virus type 1 reverse transcriptase on polymerase fidelity and mutation frequencies in vitro. J Gen Virol 87:419–428 [View Article][PubMed]
    [Google Scholar]
  14. Delviks-Frankenberry K. A., Nikolenko G. N., Maldarelli F., Hase S., Takebe Y., Pathak V. K. 2009; Subtype-specific differences in the human immunodeficiency virus type 1 reverse transcriptase connection subdomain of CRF01_AE are associated with higher levels of resistance to 3′-azido-3′-deoxythymidine. J Virol 83:8502–8513 [View Article][PubMed]
    [Google Scholar]
  15. Delviks-Frankenberry K. A., Lengruber R. B., Santos A. F., Silveira J. M., Soares M. A., Kearney M. F., Maldarelli F., Pathak V. K. 2013; Connection subdomain mutations in HIV-1 subtype-C treatment-experienced patients enhance NRTI and NNRTI drug resistance. Virology 435:433–441 [View Article][PubMed]
    [Google Scholar]
  16. Domaoal R. A., Bambara R. A., Demeter L. M. 2006; HIV-1 reverse transcriptase mutants resistant to nonnucleoside reverse transcriptase inhibitors do not adversely affect DNA synthesis: pre-steady-state and steady-state kinetic studies. J Acquir Immune Defic Syndr 42:405–411 [View Article][PubMed]
    [Google Scholar]
  17. Doualla-Bell F., Gaseitsiwe S., Ndungú T., Modukanele M., Peter T., Novitsky V., Ndwapi N., Tendani G., Avalos A. other authors 2004; Mutations and polymorphisms associated with antiretroviral drugs in HIV-1C-infected African patients. Antivir Chem Chemother 15:189–200[PubMed] [CrossRef]
    [Google Scholar]
  18. Dykes C., Mootsikapun P., Dexter A., Berrios L., Chiulli M., Reichman R. C., Demeter L. M. 2000; Analysis of env sequence evolution in human immunodeficiency virus-infected patients receiving therapy with nonnucleoside reverse-transcriptase inhibitors. [see comment] J Infect Dis 182:316–320 [View Article][PubMed]
    [Google Scholar]
  19. Dykes C., Fox K., Lloyd A., Chiulli M., Morse E., Demeter L. M. 2001; Impact of clinical reverse transcriptase sequences on the replication capacity of HIV-1 drug-resistant mutants. Virology 285:193–203 [View Article][PubMed]
    [Google Scholar]
  20. Eberle J., Gürtler L. 2012; HIV types, groups, subtypes and recombinant forms: errors in replication, selection pressure and quasispecies. Intervirology 55:79–83 [View Article][PubMed]
    [Google Scholar]
  21. García-Lerma J. G., Gerrish P. J., Wright A. C., Qari S. H., Heneine W. 2000; Evidence of a role for the Q151L mutation and the viral background in development of multiple dideoxynucleoside-resistant human immunodeficiency virus type 1. J Virol 74:9339–9346 [View Article][PubMed]
    [Google Scholar]
  22. Garriga C., Pérez-Elías M. J., Delgado R., Ruiz L., Pérez-Alvarez L., Pumarola T., López-Lirola A., González-García J., Menéndez-Arias L. Spanish Group for the Study of Antiretroviral Drug Resistance 2009; HIV-1 reverse transcriptase thumb subdomain polymorphisms associated with virological failure to nucleoside drug combinations. J Antimicrob Chemother 64:251–258 [View Article][PubMed]
    [Google Scholar]
  23. Gerondelis P., Archer R. H., Palaniappan C., Reichman R. C., Fay P. J., Bambara R. A., Demeter L. M. 1999; The P236L delavirdine-resistant human immunodeficiency virus type 1 mutant is replication defective and demonstrates alterations in both RNA 5′-end- and DNA 3′-end-directed RNase H activities. J Virol 73:5803–5813[PubMed]
    [Google Scholar]
  24. Gupta S., Vingerhoets J., Fransen S., Tambuyzer L., Azijn H., Frantzell A., Paredes R., Coakley E., Nijs S. other authors 2011; Connection domain mutations in HIV-1 reverse transcriptase do not impact etravirine susceptibility and virologic responses to etravirine-containing regimens. Antimicrob Agents Chemother 55:2872–2879 [View Article][PubMed]
    [Google Scholar]
  25. Hachiya A., Marchand B., Kirby K. A., Michailidis E., Tu X., Palczewski K., Ong Y. T., Li Z., Griffin D. T. other authors 2012; HIV-1 reverse transcriptase (RT) polymorphism 172K suppresses the effect of clinically relevant drug resistance mutations to both nucleoside and non-nucleoside RT inhibitors. J Biol Chem 287:29988–29999 [View Article][PubMed]
    [Google Scholar]
  26. Handema R., Terunuma H., Kasolo F., Kasai H., Sichone M., Yamashita A., Deng X., Mulundu G., Ichiyama K. other authors 2003; Prevalence of drug-resistance-associated mutations in antiretroviral drug-naive Zambians infected with subtype C HIV-1. AIDS Res Hum Retroviruses 19:151–160 [View Article][PubMed]
    [Google Scholar]
  27. Hou E. W., Prasad R., Beard W. A., Wilson S. H. 2004; High-level expression and purification of untagged and histidine-tagged HIV-1 reverse transcriptase. Protein Expr Purif 34:75–86 [View Article][PubMed]
    [Google Scholar]
  28. Johnson V. A., Calvez V., Günthard H. F., Paredes R., Pillay D., Shafer R., Wensing A. M., Richman D. D. 2011; 2011 update of the drug resistance mutations in HIV-1. Top Antivir Med 19:156–164[PubMed]
    [Google Scholar]
  29. Julias J. G., Ferris A. L., Boyer P. L., Hughes S. H. 2001; Replication of phenotypically mixed human immunodeficiency virus type 1 virions containing catalytically active and catalytically inactive reverse transcriptase. J Virol 75:6537–6546 [View Article][PubMed]
    [Google Scholar]
  30. Kantor R., Katzenstein D. 2003; Polymorphism in HIV-1 non-subtype B protease and reverse transcriptase and its potential impact on drug susceptibility and drug resistance evolution. AIDS Rev 5:25–35[PubMed]
    [Google Scholar]
  31. Kawamoto A., Kodama E., Sarafianos S. G., Sakagami Y., Kohgo S., Kitano K., Ashida N., Iwai Y., Hayakawa H., Nakata H. 2008; 2′-deoxy-4′-C-ethynyl-2-halo-adenosines active against drug-resistant human immunodeficiency virus type 1 variants. Int J Biochem Cell Biol 40:2410–2420 [View Article][PubMed]
    [Google Scholar]
  32. Kemp S. D., Shi C., Bloor S., Harrigan P. R., Mellors J. W., Larder B. A. 1998; A novel polymorphism at codon 333 of human immunodeficiency virus type 1 reverse transcriptase can facilitate dual resistance to zidovudine and L-2′,3′-dideoxy-3′-thiacytidine. J Virol 72:5093–5098[PubMed]
    [Google Scholar]
  33. Koval C. E., Dykes C., Wang J., Demeter L. M. 2006; Relative replication fitness of efavirenz-resistant mutants of HIV-1: correlation with frequency during clinical therapy and evidence of compensation for the reduced fitness of K103N + L100I by the nucleoside resistance mutation L74V. Virology 353:184–192 [View Article][PubMed]
    [Google Scholar]
  34. Lengruber R. B., Delviks-Frankenberry K. A., Nikolenko G. N., Baumann J., Santos A. F., Pathak V. K., Soares M. A. 2011; Phenotypic characterization of drug resistance-associated mutations in HIV-1 RT connection and RNase H domains and their correlation with thymidine analogue mutations. J Antimicrob Chemother 66:702–708 [View Article][PubMed]
    [Google Scholar]
  35. Maïga A. I., Descamps D., Morand-Joubert L., Malet I., Derache A., Cisse M., Koita V., Akonde A., Diarra B. other authors 2010; Resistance-associated mutations to etravirine (TMC-125) in antiretroviral-naïve patients infected with non-B HIV-1 subtypes. Antimicrob Agents Chemother 54:728–733 [View Article][PubMed]
    [Google Scholar]
  36. Marcelin A. G., Flandre P., Furco A., Wirden M., Molina J. M., Calvez V. AI454-176 Jaguar Study Team 2006; Impact of HIV-1 reverse transcriptase polymorphism at codons 211 and 228 on virological response to didanosine. Antivir Ther 11:693–699[PubMed]
    [Google Scholar]
  37. Michels I., Staszewski S., Gürtler L., Nisius G., Müller A., Locher L., Doerr H. W., Stürmer M. 2010; Mutations in the C-terminal region of the HIV-1 reverse transcriptase and their correlation with drug resistance associated mutations and antiviral treatment. Eur J Med Res 15:415–421 [View Article][PubMed]
    [Google Scholar]
  38. Montes B., Vergne L., Peeters M., Reynes J., Delaporte E., Segondy M. 2004; Comparison of drug resistance mutations and their interpretation in patients infected with non-B HIV-1 variants and matched patients infected with HIV-1 subtype B. J Acquir Immune Defic Syndr 35:329–336 [View Article][PubMed]
    [Google Scholar]
  39. Muñoz J. L., Parks W. P., Wolinsky S. M., Korber B. T., Hutto C. 1993; HIV-1 reverse transcriptase. A diversity generator and quasispecies regulator. Ann N Y Acad Sci 693:1 Pediatric AID65–70 [View Article][PubMed]
    [Google Scholar]
  40. O’Neal R. 2011; Rilpivirine and complera: new first-line treatment options. BETA 23:14–18[PubMed]
    [Google Scholar]
  41. Ojesina A. I., Mullins C., Imade G., Samuels J., Sankalé J. L., Pam S., Sagay S., Idoko J., Kanki P. J. 2007; Characterization of HIV type 1 reverse transcriptase mutations in infants infected by mothers who received peripartum nevirapine prophylaxis in Jos, Nigeria. AIDS Res Hum Retroviruses 23:1587–1592 [View Article][PubMed]
    [Google Scholar]
  42. Ordonez P., Hamasaki T., Isono Y., Sakakibara N., Ikejiri M., Maruyama T., Baba M. 2012; Anti-human immunodeficiency virus type 1 activity of novel 6-substituted 1-benzyl-3-(3,5-dimethylbenzyl)uracil derivatives. Antimicrob Agents Chemother 56:2581–2589 [View Article][PubMed]
    [Google Scholar]
  43. Pérez-Alvarez L., Carmona R., Muñoz M., Delgado E., Thomson M. M., Contreras G., Pedreira J. D., Rodríguez Real R., Vázquez de Parga E. other authors 2003; High incidence of non-B and recombinant HIV-1 strains in newly diagnosed patients in Galicia, Spain: study of genotypic resistance. Antivir Ther 8:355–360[PubMed]
    [Google Scholar]
  44. Poveda E., de Mendoza C., Pattery T., González M. M., Villacian J., Soriano V. 2008; Phenotypic impact of resistance mutations on etravirine susceptibility in HIV patients with prior failure to nonnucleoside analogues. AIDS 22:2395–2398 [View Article][PubMed]
    [Google Scholar]
  45. Puertas M. C., Buzón M. J., Artese A., Alcaro S., Menendez-Arias L., Perno C. F., Clotet B., Ceccherini-Silberstein F., Martinez-Picado J. 2009; Effect of the human immunodeficiency virus type 1 reverse transcriptase polymorphism Leu-214 on replication capacity and drug susceptibility. J Virol 83:7434–7439 [View Article][PubMed]
    [Google Scholar]
  46. Romano L., Venturi G., Bloor S., Harrigan R., Larder B. A., Major J. C., Zazzi M. 2002; Broad nucleoside-analogue resistance implications for human immunodeficiency virus type 1 reverse-transcriptase mutations at codons 44 and 118. J Infect Dis 185:898–904 [View Article][PubMed]
    [Google Scholar]
  47. Rose R. E., Gong Y. F., Greytok J. A., Bechtold C. M., Terry B. J., Robinson B. S., Alam M., Colonno R. J., Lin P. F. 1996; Human immunodeficiency virus type 1 viral background plays a major role in development of resistance to protease inhibitors. Proc Natl Acad Sci U S A 93:1648–1653 [View Article][PubMed]
    [Google Scholar]
  48. Spence R. A., Kati W. M., Anderson K. S., Johnson K. A. 1995; Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors. Science 267:988–993 [View Article][PubMed]
    [Google Scholar]
  49. Srivastava S., Sluis-Cremer N., Tachedjian G. 2006; Dimerization of human immunodeficiency virus type 1 reverse transcriptase as an antiviral target. Curr Pharm Des 12:1879–1894 [View Article][PubMed]
    [Google Scholar]
  50. Stürmer M., Staszewski S., Doerr H. W., Larder B., Bloor S., Hertogs K. 2003; Correlation of phenotypic zidovudine resistance with mutational patterns in the reverse transcriptase of human immunodeficiency virus type 1: interpretation of established mutations and characterization of new polymorphisms at codons 208, 211, and 214. Antimicrob Agents Chemother 47:54–61 [View Article][PubMed]
    [Google Scholar]
  51. Szilvay A. M., Nornes S., Haugan I. R., Olsen L., Prasad V. R., Endresen C., Goff S. P., Helland D. E. 1992; Epitope mapping of HIV-1 reverse transcriptase with monoclonal antibodies that inhibit polymerase and RNase H activities. J Acquir Immune Defic Syndr 5:647–657[PubMed]
    [Google Scholar]
  52. Tanuma J., Hachiya A., Ishigaki K., Gatanaga H., Minh Lien T. T., Hien N. D., Van Kinh N., Kaku M., Oka S. 2010; Impact of CRF01_AE-specific polymorphic mutations G335D and A371V in the connection subdomain of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) on susceptibility to nucleoside RT inhibitors. Microbes Infect 12:1170–1177 [View Article][PubMed]
    [Google Scholar]
  53. Toohey K., Wehrly K., Nishio J., Perryman S., Chesebro B. 1995; Human immunodeficiency virus envelope V1 and V2 regions influence replication efficiency in macrophages by affecting virus spread. Virology 213:70–79 [View Article][PubMed]
    [Google Scholar]
  54. Van Marck H., Dierynck I., Kraus G., Hallenberger S., Pattery T., Muyldermans G., Geeraert L., Borozdina L., Bonesteel R. other authors 2009; The impact of individual human immunodeficiency virus type 1 protease mutations on drug susceptibility is highly influenced by complex interactions with the background protease sequence. J Virol 83:9512–9520 [View Article][PubMed]
    [Google Scholar]
  55. Velazquez-Campoy A., Vega S., Freire E. 2002; Amplification of the effects of drug resistance mutations by background polymorphisms in HIV-1 protease from African subtypes. Biochemistry 41:8613–8619 [View Article][PubMed]
    [Google Scholar]
  56. Vergne L., Peeters M., Mpoudi-Ngole E., Bourgeois A., Liegeois F., Toure-Kane C., Mboup S., Mulanga-Kabeya C., Saman E. other authors 2000; Genetic diversity of protease and reverse transcriptase sequences in non-subtype-B human immunodeficiency virus type 1 strains: evidence of many minor drug resistance mutations in treatment-naive patients. J Clin Microbiol 38:3919–3925[PubMed]
    [Google Scholar]
  57. Vergne L., Stuyver L., Van Houtte M., Butel C., Delaporte E., Peeters M. 2006; Natural polymorphism in protease and reverse transcriptase genes and in vitro antiretroviral drug susceptibilities of non-B HIV-1 strains from treatment-naive patients. J Clin Virol 36:43–49 [View Article][PubMed]
    [Google Scholar]
  58. Vivet-Boudou V., Didierjean J., Isel C., Marquet R. 2006; Nucleoside and nucleotide inhibitors of HIV-1 replication. Cell Mol Life Sci 63:163–186 [View Article][PubMed]
    [Google Scholar]
  59. Wang J., Dykes C., Domaoal R. A., Koval C. E., Bambara R. A., Demeter L. M. 2006; The HIV-1 reverse transcriptase mutants G190S and G190A, which confer resistance to non-nucleoside reverse transcriptase inhibitors, demonstrate reductions in RNase H activity and DNA synthesis from tRNA(Lys, 3) that correlate with reductions in replication efficiency. Virology 348:462–474 [View Article][PubMed]
    [Google Scholar]
  60. Wang J., Bambara R. A., Demeter L. M., Dykes C. 2010a; Reduced fitness in cell culture of HIV-1 with nonnucleoside reverse transcriptase inhibitor-resistant mutations correlates with relative levels of reverse transcriptase content and RNase H activity in virions. J Virol 84:9377–9389 [View Article][PubMed]
    [Google Scholar]
  61. Wang J., Liang H., Bacheler L., Wu H., Deriziotis K., Demeter L. M., Dykes C. 2010b; The non-nucleoside reverse transcriptase inhibitor efavirenz stimulates replication of human immunodeficiency virus type 1 harboring certain non-nucleoside resistance mutations. Virology 402:228–237 [View Article][PubMed]
    [Google Scholar]
  62. Wang J., Zhang G., Bambara R. A., Li D., Liang H., Wu H., Smith H. M., Lowe N. R., Demeter L. M., Dykes C. 2011; Nonnucleoside reverse transcriptase inhibitor-resistant HIV is stimulated by efavirenz during early stages of infection. J Virol 85:10861–10873 [View Article][PubMed]
    [Google Scholar]
  63. Workowski K. A., Berman S. M. 2011; Centers for Disease Control and Prevention Sexually Transmitted Disease Treatment Guidelines. Clin Infect Dis 53:Suppl 3S59–S63 [View Article][PubMed]
    [Google Scholar]
  64. Yu G., Li Y., Li J., Diao L., Yan X., Lin P., He Q., Wang Y., Fu X. other authors 2009; Genetic diversity and drug resistance of HIV type 1 circulating recombinant Form_BC among drug users in Guangdong Province. AIDS Res Hum Retroviruses 25:869–875 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.054999-0
Loading
/content/journal/jgv/10.1099/vir.0.054999-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error