1887

Abstract

The TGBp1 protein, encoded in the genomes of a number of plant virus genera as the first gene of the ‘triple gene block’, possesses an NTPase/helicase domain characterized by seven conserved sequence motifs. It has been shown that the TGBp1 NTPase/helicase domain exhibits NTPase, RNA helicase and RNA-binding activities. In this paper, we have analysed a series of deletion and point mutants in the TGBp1 proteins encoded by (PVX, genus ) and (PSLV, genus ) to map functional regions responsible for their biochemical activities . It was found that, in both PVX and PSLV, the N-terminal part of the TGBp1 NTPase/helicase domain comprising conserved motifs I, Ia and II was sufficient for ATP hydrolysis, RNA binding and homologous protein–protein interactions. Point mutations in a single conserved basic amino acid residue upstream of motif I had little effect on the activities of C-terminally truncated mutants of both TGBp1 proteins. However, when introduced into the full-length NTPase/helicase domains, these mutations caused a substantial decrease in the ATPase activity of the protein, suggesting that the conserved basic amino acid residue upstream of motif I was required to maintain a reaction-competent conformation of the TGBp1 ATPase active site.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81971-0
2006-10-01
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/10/3087.html?itemId=/content/journal/jgv/10.1099/vir.0.81971-0&mimeType=html&fmt=ahah

References

  1. Angell S. M., Davies C., Baulcombe D. C. 1996; Cell-to-cell movement of potato virus X is associated with a change in the size-exclusion limit of plasmodesmata in trichome cells of Nicotiana clevelandii . Virology 216:197–201 [CrossRef]
    [Google Scholar]
  2. Bayne E. H., Rakitina D. V., Morozov S. Yu., Baulcombe D. C. 2005; Cell-to-cell movement of potato potexvirus X is dependent on suppression of RNA silencing. Plant J 44:471–482 [CrossRef]
    [Google Scholar]
  3. Bentley N. M., LaDu M. J., Rajan C., Getz G. S., Reardon C. A. 2002; Apolipoprotein E structural requirements for the formation of SDS-stable complexes with β -amyloid-(1–40): the role of salt bridges. Biochem J 366:273–279
    [Google Scholar]
  4. Caruthers J. M., McKay D. B. 2002; Helicase structure and mechanism. Curr Opin Struct Biol 12:123–133 [CrossRef]
    [Google Scholar]
  5. Cowan G. H., Lioliopoulou F., Ziegler A., Torrance L. 2002; Subcellular localisation, protein interactions, and RNA binding of potato mop-top virus triple gene block proteins. Virology 298:106–115 [CrossRef]
    [Google Scholar]
  6. Donald R. G. K., Lawrence D. M., Jackson A. O. 1997; The barley stripe mosaic virus 58-kilodalton β b protein is a multifunctional RNA binding protein. J Virol 71:1538–1546
    [Google Scholar]
  7. Gentile F., Amodeo P., Febbraio F., Picaro F., Motta A., Formisano S., Nucci R. 2002; SDS-resistant active and thermostable dimers are obtained from the dissociation of homotetrameric β -glycosidase from hyperthermophilic Sulfolobus solfataricus in SDS. Stabilizing role of the A-C intermonomeric interface. J Biol Chem 277:44050–44060 [CrossRef]
    [Google Scholar]
  8. Gorbalenya A. E., Koonin E. V. 1993; Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol 3:419–429 [CrossRef]
    [Google Scholar]
  9. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. 1989; Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res 17:4713–4730 [CrossRef]
    [Google Scholar]
  10. Goregaoker S. P., Culver J. N. 2003; Oligomerization and activity of helicase domain of the tobacco mosaic virus 126- and 183-kilodalton replicase proteins. J Virol 77:3549–3556 [CrossRef]
    [Google Scholar]
  11. Graves-Woodward K. L., Gottlieb J., Challberg M. D., Weller S. K. 1997; Biochemical analyses of mutations in the HSV-1 helicase-primase that alter ATP hydrolysis, DNA unwinding, and coupling between hydrolysis and unwinding. J Biol Chem 272:4623–4630 [CrossRef]
    [Google Scholar]
  12. Haupt S., Cowan G. H., Zeigler A., Roberts A. G., Oparka K. J., Torrance L. 2005; Two plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell 17:164–181 [CrossRef]
    [Google Scholar]
  13. Howard A. R., Heppler M. I., Ju H. J., Krishnamurthy K., Payton M. E., Verchot-Lubicz J. 2004; Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in N. benthamiana leaves. Virology 328:185–197 [CrossRef]
    [Google Scholar]
  14. Kadare G., David C., Haenni A. L. 1996; ATPase, GTPase and RNA binding activities associated with the 206-kilodalton protein of turnip yellow mosaic virus. J Virol 70:8169–8174
    [Google Scholar]
  15. Kalinina N. O., Fedorkin O. N., Samuilova O. V., Maiss E., Korpela T., Morozov S., Atabekov J. G. 1996; Expression and biochemical analyses of the recombinant potato virus X 25K movement protein. FEBS Lett 397:75–78 [CrossRef]
    [Google Scholar]
  16. Kalinina N. O., Rakitina D. A., Yelina N. E. & 9 authors; 2001; RNA-binding properties of the 63 kDa protein encoded by the triple gene block of poa semilatent hordeivirus. J Gen Virol 82:2569–2578
    [Google Scholar]
  17. Kalinina N. O., Rakitina D. V., Solovyev A. G., Schiemann J., Morozov S. Y. 2002; RNA helicase activity of the plant virus movement proteins encoded by the first gene of the triple gene block. Virology 296:321–329 [CrossRef]
    [Google Scholar]
  18. Koonin E. V. 1993; A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J Mol Biol 229:1165–1174 [CrossRef]
    [Google Scholar]
  19. Koonin E. V., Dolja V. V. 1993; Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28:375–430 [CrossRef]
    [Google Scholar]
  20. Koonin E. V., Rudd K. E. 1996; Two domains of superfamily I helicases may exist as separate proteins. Protein Sci 5:178–180
    [Google Scholar]
  21. Leipe D. D., Wolf Y. I., Koonin E. V., Aravind L. 2002; Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317:41–72 [CrossRef]
    [Google Scholar]
  22. Lin M.-K., Chang B.-Y., Liao J.-T., Lin N.-S., Hsu Y.-H. 2004; Arg-16 and Arg-21 in the N-terminal region of the triple-gene-block protein 1 of Bamboo mosaic virus are essential for virus movement. J Gen Virol 85:251–259 [CrossRef]
    [Google Scholar]
  23. Liou D.-Y., Hsu Y.-H., Wung C.-H., Wang W.-H., Lin N.-S., Chang B.-Y. 2000; Functional analyses and identification of two arginine residues essential to the ATP-utilizing activity of the triple gene block protein 1 of bamboo mosaic potexvirus. Virology 277:336–344 [CrossRef]
    [Google Scholar]
  24. Lobau S., Weber J., Wilke-Mounts S., Senior A. E. 1997; F1-ATPase, roles of three catalytic site residues. J Biol Chem 272:3648–3656 [CrossRef]
    [Google Scholar]
  25. Lough T. J., Shash K., Xoconostle-Cázares B., Hofstra K. R., Beck D. L., Balmori E., Forster R. L. S., Lucas W. J. 1998; Molecular dissection of the mechanism by which potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA. Mol Plant Microbe Interact 11:801–814 [CrossRef]
    [Google Scholar]
  26. Lough T. J., Netzler N. E., Emerson S. J., Sutherland P., Carr F., Beck D. L., Lucas W. J., Forster R. L. 2000; Cell-to-cell movement of potexviruses: evidence for a ribonucleoprotein complex involving the coat protein and first triple gene block protein. Mol Plant Microbe Interact 13:962–974 [CrossRef]
    [Google Scholar]
  27. Lucas W. J. 2006; Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344:169–184 [CrossRef]
    [Google Scholar]
  28. Malcuit I., Marano M. R., Kavanagh T. A., De Jong W., Forsyth A., Baulcombe D. C. 1999; The 25-kDa movement protein of PVX elicits Nb -mediated hypersensitive cell death in potato. Mol Plant Microbe Interact 12:536–543 [CrossRef]
    [Google Scholar]
  29. Marcos J. F., Vilar M., Perez-Paya E., Pallas V. 1999; In vivo detection, RNA-binding properties and characterization of the RNA-binding domain of the p7 putative movement protein from carnation mottle carmovirus (CarMV). Virology 255:354–365 [CrossRef]
    [Google Scholar]
  30. Morozov S. Yu., Solovyev A. G. 2003; Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 84:1351–1366 [CrossRef]
    [Google Scholar]
  31. Morozov S. Y., Dolja V. V., Atabekov J. G. 1989; Probable reassortment of genomic elements among elongated RNA-containing plant viruses. J Mol Evol 29:52–62 [CrossRef]
    [Google Scholar]
  32. Morozov S. Y., Solovyev A. G., Kalinina N. O., Fedorkin O. N., Samuilova O. V., Schiemann J., Atabekov J. G. 1999; Evidence for two nonoverlapping functional domains in the potato virus X 25K movement protein. Virology 260:55–63 [CrossRef]
    [Google Scholar]
  33. Rakitina D. V., Kantidze O. L., Leshchiner A. D., Solovyev A. G., Novikov V. K., Morozov S. Yu., Kalinina N. O. 2005; Coat proteins of two filamentous viruses display NTPase activity in vitro. FEBS Lett 579:4955–4960 [CrossRef]
    [Google Scholar]
  34. Rouleau M., Smith R. J., Bancroft J. B., Mackie G. A. 1994; Purification, properties, and subcellular localization of foxtail mosaic potexvirus 26-kDa protein. Virology 204:254–265 [CrossRef]
    [Google Scholar]
  35. Schepetilnikov M. V., Manske U., Solovyev A. G., Zamyatnin A. A., Schiemann J. Jr, Morozov S. Yu. 2005; The hydrophobic segment of potato virus X TGBp3 a major determinant of the protein intracellular trafficking. J Gen Virol 86:2379–2391 [CrossRef]
    [Google Scholar]
  36. Solovyev A. G., Savenkov E. I., Agranovsky A. A., Morozov S. Y. 1996; Comparisons of the genomic cis-elements and coding regions in RNA beta components of the hordeiviruses barley stripe mosaic virus, lychnis ringspot virus, and poa semilatent virus. Virology 219:9–18 [CrossRef]
    [Google Scholar]
  37. Taliansky M., Roberts I. M., Kalinina N., Ryabov E. V., Raj S. K., Robinson D. J., Oparka K. J. 2003; An umbraviral protein, involved in long-distance RNA movement, binds viral RNA and forms unique, protective ribonucleoprotein complexes. J Virol 77:3031–3040 [CrossRef]
    [Google Scholar]
  38. Verchot-Lubicz J. 2005; A new cell-to-cell transport model for potexviruses. Mol Plant Microbe Interact 18:283–290 [CrossRef]
    [Google Scholar]
  39. Vetter I. R., Wittinghofer A. 1999; Nucleoside triphosphate-binding proteins: different scaffolds to achieve phosphoryl transfer. Q Rev Biophys 32:1–56 [CrossRef]
    [Google Scholar]
  40. Voinnet O., Lederer C., Baulcombe D. C. 2000; A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana . Cell 103:157–167 [CrossRef]
    [Google Scholar]
  41. Wung C. H., Hsu Y. H., Liou D. Y., Huang W. C., Lin N. S., Chang B. Y. 1999; Identification of the RNA-binding sites of the triple gene block protein 1 of bamboo mosaic potexvirus. J Gen Virol 80:1119–1126
    [Google Scholar]
  42. Yang Y., Ding B., Baulcombe D. C., Verchot J. 2000; Cell-to-cell movement of the 25K protein of potato virus X is regulated by three other viral proteins. Mol Plant Microbe Interact 13:599–605 [CrossRef]
    [Google Scholar]
  43. Zamyatnin A. A. Jr, Solovyev A. G., Savenkov E. I., Germudson A., Sandgren M., Valkonen J. P. T., Morozov S. Yu. 2004; Transient coexpression of individual genes encoded by the triple gene block of potato mop-top virus reveals requirements for TGBp1 trafficking. Mol Plant Microbe Interact 17:921–930 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81971-0
Loading
/content/journal/jgv/10.1099/vir.0.81971-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error