1887

Abstract

picorna-like virus (EoPV) is an insect RNA virus that causes a lethal granulosis infection of larvae of the tea looper (). An internal ribosome entry site (IRES) mediates translation initiation of EoPV RNA. Here, bicistronic constructs were used to examine the 5′ untranslated region (UTR) of EoPV for IRES activity. The capacities of the EoPV 5′ UTR IRES and another insect virus IRES, the cricket paralysis virus intergenic region IRES, to mediate internal translation initiation in a variety of translation systems were also compared. The results demonstrated that the EoPV IRES functioned efficiently not only in mammalian cell-derived systems, but also in an insect cell-derived translation system. However, it functioned inefficiently in a plant cell-derived translation system. This study reveals the host preferences of the EoPV IRES and important differences in IRES function between the EoPV IRES and other characterized picorna-like insect viral IRESs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83201-0
2007-10-01
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/10/2834.html?itemId=/content/journal/jgv/10.1099/vir.0.83201-0&mimeType=html&fmt=ahah

References

  1. Belsham G. J., Jackson R. J. 2000; Translation initiation on picornavirus RNA. In Translational Control of Gene Expression . pp 869–900 Edited by Sonenberg N., Hershey J. W. B., Mathews M. B. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  2. Belsham G. J., Sonenberg N. 2000; Picornavirus RNA translation: roles for cellular proteins. Trends Microbiol 8:330–335 [CrossRef]
    [Google Scholar]
  3. Borman A. M., Le Mercier P., Girard M., Kean K. M. 1997a; Comparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins. Nucleic Acids Res 25:925–932
    [Google Scholar]
  4. Borman A. M., Kirchweger R., Ziegler E., Rhoads R. E., Skern T., Kean K. M. 1997b; elF4G and its proteolytic cleavage products: effect on initiation of protein synthesis from capped, uncapped, and IRES-containing mRNAs. RNA 3:186–196
    [Google Scholar]
  5. Brown B. A., Ehrenfeld E. 1979; Translation of poliovirus RNA in vitro : changes in cleavage pattern and initiation sites by ribosomal salt wash. Virology 97:396–405 [CrossRef]
    [Google Scholar]
  6. Carter M. S., Sarnow P. 2000; Distinct mRNAs that encode La autoantigen are differentially expressed and contain internal ribosome entry sites. J Biol Chem 275:28301–28307
    [Google Scholar]
  7. Christian P., Carstens E., Domier L., Johnson J., Johnson K., Nakashima N., Scotti P., van der Wilk F. 2005; Genus Iflavirus . In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses pp 779–782 Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. San Diego, CA: Elsevier Academic Press;
    [Google Scholar]
  8. Czibener C., Alvarez D., Scodeller E., Gamarnik A. V. 2005; Characterization of internal ribosomal entry sites of Triatoma virus. J Gen Virol 86:2275–2280 [CrossRef]
    [Google Scholar]
  9. Domier L. L., McCoppin N. K. 2003; In vivo activity of Rhopalosiphum padi virus internal ribosome entry sites. J Gen Virol 84:415–419 [CrossRef]
    [Google Scholar]
  10. Dorner A. J., Semler B. L., Jackson R. J., Hanecak R., Duprey E., Wimmer E. 1984; In vitro translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate. J Virol 50:507–514
    [Google Scholar]
  11. Finkelstein Y., Faktor O., Elroy-Stein O., Levi B.-Z. 1999; The use of bi-cistronic transfer vectors for the baculovirus expression system. J Biotechnol 75:33–44 [CrossRef]
    [Google Scholar]
  12. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 83:8122–8126 [CrossRef]
    [Google Scholar]
  13. Glass M. J., Summers D. F. 1993; Identification of a trans-acting activity from liver that stimulates hepatitis A virus translation in vitro . Virology 193:1047–1050 [CrossRef]
    [Google Scholar]
  14. Hashimoto Y., Watanabe A., Kawase S. 1984; In vitro translation of infectious flacherie virus RNA in a wheat germ and a rabbit reticulocyte system. Biochim Biophys Acta 781:76–80 [CrossRef]
    [Google Scholar]
  15. Jackson R. J., Hunt S. L., Gibbs C. L., Kaminski A. 1994; Internal initiation of translation of picornavirus RNAs. Mol Biol Rep 19:147–159 [CrossRef]
    [Google Scholar]
  16. Lu J., Zhang J., Wang X., Jiang H., Liu C., Hu Y. 2006; In vitro and in vivo identification of structural and sequence elements in the 5′ untranslated region of Ectropis obliqua picorna-like virus required for internal initiation. J Gen Virol 87:3667–3677 [CrossRef]
    [Google Scholar]
  17. Masoumi A., Hanzlik T. N., Christian P. D. 2003; Functionality of the 5′- and intergenic IRES elements of cricket paralysis virus in a range of insect cell lines, and its relationship with viral activities. Virus Res 94:113 [CrossRef]
    [Google Scholar]
  18. Ongus J. R., Roode E. C., Pleij C. W. A., Vlak J. M., van Oers M. M. 2006; The 5′ non-translated region of Varroa destructor virus 1 (genus Iflavirus ): structure prediction and IRES activity in Lymantria dispar cells. J Gen Virol 87:3397–3407 [CrossRef]
    [Google Scholar]
  19. Roberts L. O., Seamons R. A., Belsham G. J. 1998; Recognition of picornavirus internal ribosome entry sites within cells; influence of cellular and viral proteins. RNA 4:520–529 [CrossRef]
    [Google Scholar]
  20. Royall E., Woolaway K. E., Schacherl J., Kubick S., Belsham G. J., Roberts L. O. 2004; The Rhopalosiphum padi virus 5′ internal ribosome entry site is functional in Spodoptera frugiperda 21 cells and in their cell-free lysates: implications for the baculovirus expression system. J Gen Virol 85:1565–1569 [CrossRef]
    [Google Scholar]
  21. Sasaki J., Nakashima N., Saito H., Noda H. 1998; An insect picorna-like virus, Plautia stali intestine virus, has genes of capsid proteins in the 3′ part of the genome. Virology 244:50–58 [CrossRef]
    [Google Scholar]
  22. van Poelwijk F., Broer R., Belsham G. J., Oudshoorn P., Vlak J. M., Goldbach R. W. 1995; A hybrid baculovirus-bacteriophage T7 transient expression system. Biotechnology (N Y) 13:261–264 [CrossRef]
    [Google Scholar]
  23. Wang X., Zhang J., Lu J., Yi F., Liu C., Hu Y. 2004; Sequence analysis and genomic organization of a new insect picorna-like virus, Ectropis obliqua picorna-like virus, isolated from Ectropis obliqua . J Gen Virol 85:1145–1151 [CrossRef]
    [Google Scholar]
  24. Wilson J. E., Powell M. J., Hoover S. E., Sarnow P. 2000; Naturally occurring dicistronic cricket paralysis virus RNA is regulated by two internal ribosome entry sites. Mol Cell Biol 20:4990–4999 [CrossRef]
    [Google Scholar]
  25. Woolaway K. E., Lazaridis K., Belsham G. J., Carter M. J., Roberts L. O. 2001; The 5′ untranslated region of Rhopalosiphum padi virus contains an internal ribosome entry site which functions efficiently in mammalian, plant, and insect translation systems. J Virol 75:10244–10249 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83201-0
Loading
/content/journal/jgv/10.1099/vir.0.83201-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error