1887

Abstract

Latency-associated nuclear antigen 1 (LANA1) of Kaposi's sarcoma-associated herpesvirus (KSHV) plays a pivotal role in the maintenance of the virus genome in latently infected cells. LANA1 links virus genomes to host chromosomes via a C-terminal DNA-binding domain which interacts with the sequences located in terminal repeats (TRs) of the virus genome and via an N-terminal chromosome-binding sequence which associates with the host chromosomes, respectively. Recent data suggest that LANA1 also actively participates in the replication of KSHV TR-containing plasmid in the transient DNA replication assay. In this report, it was found that C33A and COS-1, but not NIH/3T3, cell lines are permissive for the transient replication of KSHV TR-containing plasmid. Using several LANA1-deletion mutants, the minimum domain of LANA1 required for replication activity was also determined. In addition, the N terminus of LANA1 inhibited the transient replication systems of KSHV and Epstein–Barr virus (EBV) in transiently transfected 293 and 293T cells, but the C terminus of LANA1 specifically inhibited the transient replication system of KSHV in other cell lines. Consistent with previous reports, these data further emphasize the functional importance of the N terminus of LANA1 on replication from the KSHV latent origin of DNA replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19510-0
2004-04-01
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/4/vir850843.html?itemId=/content/journal/jgv/10.1099/vir.0.19510-0&mimeType=html&fmt=ahah

References

  1. Almasan A., Yin Y., Kelly R. E., Lee E. Y., Bradley A., Li W., Bertino J. R., Wahl G. M. 1995; Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes, and apoptosis. Proc Natl Acad Sci U S A 92:5436–5440
    [Google Scholar]
  2. An J., Lichtenstein A. K., Brent G., Rettig M. B. 2002; The Kaposi sarcoma-associated herpesvirus (KSHV) induces cellular interleukin 6 expression: role of the KSHV latency-associated nuclear antigen and the AP1 response element. Blood 99:649–654
    [Google Scholar]
  3. Ballestas M. E., Kaye K. M. 2001; Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (TR) sequence and specifically binds TR DNA. J Virol 75:3250–3258
    [Google Scholar]
  4. Ballestas M. E., Chatis P. A., Kaye K. M. 1999; Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284:641–644
    [Google Scholar]
  5. Cesarman E., Chang Y., Moore P. S., Said J. W., Knowles D. M. 1995a; Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332:1186–1191
    [Google Scholar]
  6. Cesarman E., Moore P. S., Rao P. H., Inghirami G., Knowles D. M., Chang Y. 1995b; In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi's sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood 86:2708–2714
    [Google Scholar]
  7. Chang Y., Cesarman E., Pessin M. S., Lee F., Culpepper J., Knowles D. M., Moore P. S. 1994; Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266:1865–1869
    [Google Scholar]
  8. Chaudhuri B., Xu H., Todorov I., Dutta A., Yates J. L. 2001; Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus. Proc Natl Acad Sci U S A 98:10085–10089
    [Google Scholar]
  9. Chiang C. M., Ustav M., Stenlund A., Ho T. F., Broker T. R., Chow L. T. 1992; Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proc Natl Acad Sci U S A 89:5799–5803
    [Google Scholar]
  10. Cotter M. A. II, Robertson E. S. 1999; The latency-associated nuclear antigen tethers the Kaposi's sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology 264:254–264
    [Google Scholar]
  11. Cotter M. A. II, Subramanian C., Robertson E. S. 2001; The Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen binds to specific sequences at the left end of the viral genome through its carboxy-terminus. Virology 291:241–259
    [Google Scholar]
  12. Decker L. L., Shankar P., Khan G., Freeman R. B., Dezube B. J., Lieberman J., Thorley-Lawson D. A. 1996; The Kaposi sarcoma-associated herpesvirus (KSHV) is present as an intact latent genome in KS tissue but replicates in the peripheral blood mononuclear cells of KS patients. J Exp Med 184:283–288
    [Google Scholar]
  13. Del Vecchio A. M., Romanczuk H., Howley P. M., Baker C. C. 1992; Transient replication of human papillomavirus DNAs. J Virol 66:5949–5958
    [Google Scholar]
  14. Demeret C., Le Moal M., Yaniv M., Thierry F. 1995; Control of HPV 18 DNA replication by cellular and viral transcription factors. Nucleic Acids Res 23:4777–4784
    [Google Scholar]
  15. Dhar S. K., Yoshida K., Machida Y., Khaira P., Chaudhuri B., Wohlschlegel J. A., Leffak M., Yates J., Dutta A. 2001; Replication from oriP of Epstein-Barr virus requires human ORC and is inhibited by geminin. Cell 106:287–296
    [Google Scholar]
  16. Friborg J. Jr, Kong W., Hottiger M. O., Nabel G. J. 1999; p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402:889–894
    [Google Scholar]
  17. Garber A. C., Shu M. A., Hu J., Renne R. 2001; DNA binding and modulation of gene expression by the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J Virol 75:7882–7892
    [Google Scholar]
  18. Garber A. C., Hu J., Renne R. 2002; Latency-associated nuclear antigen (LANA) cooperatively binds to two sites within the terminal repeat, and both sites contribute to the ability of LANA to suppress transcription and to facilitate DNA replication. J Biol Chem 277:27401–27411
    [Google Scholar]
  19. Groves A. K., Cotter M. A., Subramanian C., Robertson E. S. 2001; The latency-associated nuclear antigen encoded by Kaposi's sarcoma-associated herpesvirus activates two major essential Epstein-Barr virus latent promoters. J Virol 75:9446–9457
    [Google Scholar]
  20. Gwack Y., Hwang S., Byun H., Lim C., Kim J. W., Choi E. J., Choe J. 2001; Kaposi's sarcoma-associated herpesvirus open reading frame 50 represses p53-induced transcriptional activity and apoptosis. J Virol 75:6245–6248
    [Google Scholar]
  21. Hirt B. 1967; Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 26:365–369
    [Google Scholar]
  22. Hu J., Garber A. C., Renne R. 2002; The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus supports latent DNA replication in dividing cells. J Virol 76:11677–11687
    [Google Scholar]
  23. Hung S. C., Kang M. S., Kieff E. 2001; Maintenance of Epstein-Barr virus (EBV) oriP-based episomes requires EBV-encoded nuclear antigen-1 chromosome-binding domains, which can be replaced by high-mobility group-I or histone H1. Proc Natl Acad Sci U S A 98:1865–1870
    [Google Scholar]
  24. Hwang S. G., Lee D., Kim J., Seo T., Choe J. 2002; Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J Biol Chem 277:2923–2930
    [Google Scholar]
  25. Hyun T. S., Subramanian C., Cotter M. A. II, Thomas R. A., Robertson E. S. 2001; Latency-associated nuclear antigen encoded by Kaposi's sarcoma-associated herpesvirus interacts with Tat and activates the long terminal repeat of human immunodeficiency virus type 1 in human cells. J Virol 75:8761–8771
    [Google Scholar]
  26. Knight J. S., Cotter M. A. II, Robertson E. S. 2001; The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus transactivates the telomerase reverse transcriptase promoter. J Biol Chem 276:22971–22978
    [Google Scholar]
  27. Krithivas A., Young D. B., Liao G., Greene D., Hayward S. D. 2000; Human herpesvirus 8 LANA interacts with proteins of the mSin3 corepressor complex and negatively regulates Epstein-Barr virus gene expression in dually infected PEL cells. J Virol 74:9637–9645
    [Google Scholar]
  28. Krithivas A., Fujimuro M., Weidner M., Young D. B., Hayward S. D. 2002; Protein interactions targeting the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus to cell chromosomes. J Virol 76:11596–11604
    [Google Scholar]
  29. Lagunoff M., Ganem D. 1997; The structure and coding organization of the genomic termini of Kaposi's sarcoma-associated herpesvirus. Virology 236:147–154
    [Google Scholar]
  30. Lee D., Kim H., Lee Y., Choe J. 1997; Identification of sequence requirement for the origin of DNA replication in human papillomavirus type 18. Virus Res 52:97–108
    [Google Scholar]
  31. Lim C., Sohn H., Gwack Y., Choe J. 2000; Latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) binds ATF4/CREB2 and inhibits its transcriptional activation activity. J Gen Virol 81:2645–2652
    [Google Scholar]
  32. Lim C., Gwack Y., Hwang S., Kim S., Choe J. 2001; The transcriptional activity of cAMP response element-binding protein-binding protein is modulated by the latency associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J Biol Chem 276:31016–31022
    [Google Scholar]
  33. Lim C., Sohn H., Lee D., Gwack Y., Choe J. 2002; Functional dissection of latency-associated nuclear antigen 1 of Kaposi's sarcoma-associated herpesvirus involved in latent DNA replication and transcription of terminal repeats of the viral genome. J Virol 76:10320–10331
    [Google Scholar]
  34. Lim C., Lee D., Seo T., Choi C., Choe J. 2003; Latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus functionally interacts with heterochromatin protein 1. J Biol Chem 278:7397–7405
    [Google Scholar]
  35. Lukac D. M., Renne R., Kirshner J. R., Ganem D. 1998; Reactivation of Kaposi's sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R protein. Virology 252:304–312
    [Google Scholar]
  36. Lukac D. M., Kirshner J. R., Ganem D. 1999; Transcriptional activation by the product of open reading frame 50 of Kaposi's sarcoma-associated herpesvirus is required for lytic viral reactivation in B cells. J Virol 73:9348–9361
    [Google Scholar]
  37. Lupton S., Levine A. J. 1985; Mapping genetic elements of Epstein-Barr virus that facilitate extrachromosomal persistence of Epstein-Barr virus-derived plasmids in human cells. Mol Cell Biol 5:2533–2542
    [Google Scholar]
  38. Middleton T., Sugden B. 1994; Retention of plasmid DNA in mammalian cells is enhanced by binding of the Epstein-Barr virus replication protein EBNA1. J Virol 68:4067–4071
    [Google Scholar]
  39. Miller G., Rigsby M. O., Heston L. 7 other authors 1996; Antibodies to butyrate-inducible antigens of Kaposi's sarcoma-associated herpesvirus in patients with HIV-1 infection. N Engl J Med 334:1292–1297
    [Google Scholar]
  40. Mizuguchi H., Hosono T., Hayakawa T. 2000; Long-term replication of Epstein-Barr virus-derived episomal vectors in the rodent cells. FEBS Lett 472:173–178
    [Google Scholar]
  41. Moore P. S., Gao S. J., Dominguez G. 7 other authors 1996; Primary characterization of a herpesvirus agent associated with Kaposi's sarcomae. J Virol 70:549–558
    [Google Scholar]
  42. Piolot T., Tramier M., Coppey M., Nicolas J. C., Marechal V. 2001; Close but distinct regions of human herpesvirus 8 latency-associated nuclear antigen 1 are responsible for nuclear targeting and binding to human mitotic chromosomes. J Virol 75:3948–3959
    [Google Scholar]
  43. Qin X. Q., Livingston D. M., Kaelin W. G. Jr, Adams P. D. 1994; Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci U S A 91:10918–10922
    [Google Scholar]
  44. Radkov S. A., Kellam P., Boshoff C. 2000; The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med 6:1121–1127
    [Google Scholar]
  45. Rainbow L., Platt G. M., Simpson G. R., Sarid R., Gao S. J., Stoiber H., Herrington C. S., Moore P. S., Schulz T. F. 1997; The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J Virol 71:5915–5921
    [Google Scholar]
  46. Reisman D., Yates J., Sugden B. 1985; A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components. Mol Cell Biol 5:1822–1832
    [Google Scholar]
  47. Renne R., Zhong W., Herndier B., McGrath M., Abbey N., Kedes D., Ganem D. 1996; Lytic growth of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med 2:342–346
    [Google Scholar]
  48. Renne R., Barry C., Dittmer D., Compitello N., Brown P. O., Ganem D. 2001; Modulation of cellular and viral gene expression by the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J Virol 75:458–468
    [Google Scholar]
  49. Russo J. J., Bohenzky R. A., Chien M. C. 8 other authors 1996; Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8. Proc Natl Acad Sci U S A 93:14862–14867
    [Google Scholar]
  50. Sarid R., Flore O., Bohenzky R. A., Chang Y., Moore P. S. 1998; Transcription mapping of the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J Virol 72:1005–1012
    [Google Scholar]
  51. Schepers A., Ritzi M., Bousset K., Kremmer E., Yates J. L., Harwood J., Diffley J. F., Hammerschmidt W. 2001; Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus. EMBO J 20:4588–4602
    [Google Scholar]
  52. Schwam D. R., Luciano R. L., Mahajan S. S., Wong L., Wilson A. C. 2000; Carboxy terminus of human herpesvirus 8 latency-associated nuclear antigen mediates dimerization, transcriptional repression, and targeting to nuclear bodies. J Virol 74:8532–8540
    [Google Scholar]
  53. Shan B., Lee W. H. 1994; Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol Cell Biol 14:8166–8173
    [Google Scholar]
  54. Shinohara H., Fukushi M., Higuchi M., Oie M., Hoshi O., Ushiki T., Hayashi J., Fujii M. 2002; Chromosome binding site of latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus is essential for persistent episome maintenance and is functionally replaced by histone H1. J Virol 76:12917–12924
    [Google Scholar]
  55. Soulier J., Grollet L., Oksenhendler E. 8 other authors 1995; Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86:1276–1280
    [Google Scholar]
  56. Sun R., Lin S. F., Gradoville L., Yuan Y., Zhu F., Miller G. 1998; A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 95:10866–10871
    [Google Scholar]
  57. Ustav M., Stenlund A. 1991; Transient replication of BPV-1 requires two viral polypeptides encoded by the E1 and E2 open reading frames. EMBO J 10:449–457
    [Google Scholar]
  58. Wu X., Levine A. J. 1994; p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci U S A 91:3602–3606
    [Google Scholar]
  59. Yates J. L., Warren N., Sugden B. 1985; Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313:812–815
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19510-0
Loading
/content/journal/jgv/10.1099/vir.0.19510-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error