1887

Abstract

SUMMARY

An adenovirus (Ad) interserotypic recombinant (H2141) between temperature-sensitive mutant H2111 of Ad2 and deletion mutant H5313 of Ad5 was isolated and characterized. It was phenotypically , , and formed large plaques (or cytocidal: ). It contained the right 89% of Ad5 DNA and the leftmost 11% of Ad2 DNA. Genetic recombination data suggested the cytocidal mutation lay in the transforming region E1B, confirming sequence analysis. The cytocidal effect resulted in part from the breakdown of cellular DNA. Host cell and virus DNA breakdown induced by H2141 appeared cell-dependent: it occurred in HeLa, KB or BHK-21 cells, but not in CV1 or 293 cells. In human cells the effect was recessive and adenovirus DNA degradation was prevented by co-infection with adenovirus wild-type (H2WT), other adenovirus serotypes or simian virus 40 (SV40). In simian cells, H2141 did not inhibit SV40 DNA replication, unlike H2WT. The amount of H2141 DNA integrated in human cell DNA at early stages of the lytic cycle was found to be significantly lower than for H2WT. Novobiocin inhibited viral DNA breakdown in human cells. Cellular DNA extracted from H2141-infected cells exhibited a repeat band pattern in gel electrophoresis reminiscent of the nuclease digestion pattern of chromatin, with monosome-size fragments as the digestion limit. The H2141-induced nucleolytic effect would therefore occur in the linker regions of cell DNA and might result from the observed stimulation (by a factor of greater than 100) of an acidic (optimum pH 4.0) endonuclease activity. The nucleolytic effect also appeared to be recessive and absent in mixed samples containing extracts from H2141-infected cells plus extracts from H2WT- or mock-infected cells. The virus gene product responsible for the enhancement of the acidic endonuclease was found to function stoichiometrically and not catalytically. The cytocidal and nucleolytic effects of the viral E1B region 19K protein may be mediated by a cellular inhibitor of acidic endonuclease.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-66-9-1873
1985-09-01
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/66/9/JV0660091873.html?itemId=/content/journal/jgv/10.1099/0022-1317-66-9-1873&mimeType=html&fmt=ahah

References

  1. Babich A., Nevins J. R. 1981; The stability of early adenoviral mRNA is controlled by the viral 73Kd DNA binding protein. Cell 26:371–379
    [Google Scholar]
  2. Bos J. L., Polder L. J., Bernards R., Schrier P. I., Van Den Elsen P. J., Van Der Eb A. J., Van Ormondt H. 1981; The 2-2 kb Elb mRNA of human Adl2 and Ad5 codes for two tumor antigens starting at different AUG triplets. Cell 21:121–131
    [Google Scholar]
  3. Brackmann K. H., Green M., Wold W. S. M., Cartas M. A., Matsuo T., Hashimoto S. 1980; Identification and peptide mapping of human adenovirus type 2: induced early polypeptides isolated by two-dimensional gel electrophoresis and immunoprecipitation. Journal of Biological Chemistry 255:6772–6779
    [Google Scholar]
  4. Brown M., Weber J. 1980; Virion core like organization of intranuclear adenovirus chromatin late in infection. Virology 107:306–310
    [Google Scholar]
  5. Carlock L. R., Jones N. C. 1981; Transformation defective mutant of adenovirus type 5 containing a single altered Ela mRNA species. Journal of Virology 40:657–664
    [Google Scholar]
  6. Carter T. H., Blanton R. A. 1978; Autoregulation of adenovirus type 5 early gene expression. II. Effect of temperature-sensitive early mutations on virus RNA accumulation. Journal of Virology 28:450–456
    [Google Scholar]
  7. Chinnadurai G. 1983; Adenovirus 2 lp+ locus codes for a 19 kd tumor antigen that plays an essential role in cell transformation. Cell 33:759–766
    [Google Scholar]
  8. Chinnadurai G., Chinnadurai S., Brusca J. 1979; Physical mapping of a large plaque mutation of adenovirus type 2. Journal of Virology 32:623–628
    [Google Scholar]
  9. Daniell E., Groff D. E., Fedor M. J. 1981; Adenovirus chromatin structure at different stages of infection. Molecular and Cellular Biology 1:1094–1105
    [Google Scholar]
  10. Delsert C., D’halluin J. C. 1984; Genetic expression of human adenoviruses in simian cells. Evidence for interserotypic inhibition of viral DNA synthesis. Virus Research 1:365–380
    [Google Scholar]
  11. D’halluin J. C., Allart C., Cousin C., Boulanger P. A., Martin G. R. 1979; Adenovirus early function required for protection of viral and cellular DNA. Journal of Virology 32:61–91
    [Google Scholar]
  12. D’halluin J. C., Milleville M., Boulanger P. 1980; Effects of novobiocin on adenovirus DNA synthesis and encapsidation. Nucleic Acids Research 8:1625–1641
    [Google Scholar]
  13. D’Halluin J. C., Cousin C., Niel C., Boulanger P. 1984; Characterization of an early temperature-sensitive and cytocidal double mutant of adenovirus type 2. Journal of Genera! Virology 65:1305–1317
    [Google Scholar]
  14. Ensinger M. J., Ginsberg H. S. 1972; Selection and preliminary characterization of temperature-sensitive mutants of type 5 adenovirus. Journal of Virology 10:328–339
    [Google Scholar]
  15. Esche H., Mathews M. B., Lewis J. B. 1980; Proteins and messenger RNAs of the transforming region of wild- type and mutant adenoviruses. Journal of Molecular Biology 142:399–417
    [Google Scholar]
  16. Ezoe H., Lai-Fatt R. B., Mak S. 1981; Degradation of intracellular DNA in KB cells infected with cyt mutants of human adenovirus type 12. Journal of Virology 40:20–27
    [Google Scholar]
  17. Friedman M. P., Lyons M. J., Ginsberg H. S. 1970; Biochemical consequences of type 2 adenovirus and simian virus double infections of African green monkey kidney cells. Journal of Virology 5:586–597
    [Google Scholar]
  18. Frost E., Williams J. 1978; Mapping temperature sensitive and host range mutations of adenovirus type 5 by marker rescue. Virology 91:39–50
    [Google Scholar]
  19. Galos R. S., Williams J., Binger M. H., Flint S. J. 1979; Location of additional early gene sequences in the adenoviral chromosome. Cell 17:945–956
    [Google Scholar]
  20. Gingeras T. R., Sciaky D., Gelinas R. E., Bing-Dong J., Yen C., Kelly M., Bullock P., Parsons B., O’Neil K., Roberts R. J. 1982; Nucleotide sequence from the adenovirus-2 genome. Journal of Biological Chemistry 257:13475–13491
    [Google Scholar]
  21. Goldman N. D., Howley P., Khoury G. 1981; Functional interaction between the early viral proteins of simian virus 40 and adenovirus. Virology 109:303–313
    [Google Scholar]
  22. Graham F. L., Abrahams P. J., Mulder C., Heijneker H. L., Warnaar S. O., De Vries F. A. J., Van Der Eb A. J. 1974; Studies on in vitro transformation by DNA and DNA fragments of human adenovirus and SV 40. Cold Spring Harbor Symposia on Quantitative Biology 39:637–650
    [Google Scholar]
  23. Graham F. L., Smiley J., Russell W. C., Nairn R. 1977; Characteristics of a human cell line transformed by DNA from human adenovirus type 5. Journal of General Virology 36:59–72
    [Google Scholar]
  24. Halbert D., Spector D., Raskas H. J. 1979; In vitro translation product specified by the transforming region of adenovirus type 2. Journal of Virology 31:621–629
    [Google Scholar]
  25. Harter M. L., Lewis J. 1978; Adenovirus type 2 early proteins synthesized in vitro and in vivo: identification in infected cells of the 35000–50000 molecular weight protein encoded by the left end of the adenovirus type 2 genome. Journal of Virology 26:736–749
    [Google Scholar]
  26. Jones N., Shenk T. 1978; Isolation of deletion and substitution mutants of adenovirus type 5. Cell 13:181–188
    [Google Scholar]
  27. Lai-Fatt R. B., Mak S. 1982; Mapping of an adenovirus function involved in the inhibition of DNA degradation. Journal of Virology 42:969–977
    [Google Scholar]
  28. Lewis J. B., Atkins J. F., Baum P. R., Solem R., Gesteland R. F., Anderson C. W. 1976; Location and identification of the genes for adenovirus type 2 early polypeptides. Cell 7:141–151
    [Google Scholar]
  29. Mak I., Mak S. 1983; Transformation of rat cells by cyt mutants of adenovirus type 12 and mutants of adenovirus type 5. Journal of Virology 45:1107–1117
    [Google Scholar]
  30. Martin G. R., Warocquier R., Cousin C., D’halluin J. C., Boulanger P. A. 1978; Isolation and phenotypic characterization of human adenovirus type 2 temperature-sensitive mutants. Journal of General Virology 41:303–314
    [Google Scholar]
  31. Padmanabhan R., Stabel S., Winterhoff U., Doerfler W. 1979; Specificity and mode of cleavage of the pH 4.0 endonuclease from adenovirus type 2 infected KB cells. Nucleic Acids Research 7:3161–3176
    [Google Scholar]
  32. Patch C. T., Howley P. M., Hauser J., Levine A. S. 1981; Kinetics of inhibition of papovavirus DNA synthesis by superinfection with adenovirus 2 and non-defective adenovirus 2-simian virus 40 hybrid viruses. Journal of General Virology 55:355–365
    [Google Scholar]
  33. Persson H., Katze M. G., Philipson L. 1982; Purification of a native membrane-associated adenovirus tumor antigen. Journal of Virology 42:905–917
    [Google Scholar]
  34. Pilder S., Logan J., Shenk T. 1984; Deletion of the gene encoding the adenovirus 5 early region 1B-21, 000- molecular weight polypeptide leads to degradation of viral and host cell DNA. Journal of Virology 52:664671
    [Google Scholar]
  35. Rabek J. P., Zakian U. A., Levine A. J. 1981; The SV40 A gene product suppresses the adenovirus H5tsl25 defect in DNA replication. Virology 109:290–302
    [Google Scholar]
  36. Reif U. M., Winterhoff U., Doerfler W. 1977a; Characterization of the pH 4 0 endonuclease from adenovirus-type 2 infected KB cells. European Journal of Biochemistry 73:327–333
    [Google Scholar]
  37. Reif U. M., Winterhoff U., Lundholm U., Philipson L., Doerfler W. 1977b; Purification of an endonuclease from adenovirus-infected KB cells. European Journal of Biochemistry 73:313–325
    [Google Scholar]
  38. Ricciardi R. L., Jones R. C., Cepko C., Sharp P. A., Roberts B. E. 1981; Expression of early adenovirus genes requires a viral encoded acidic polypeptide. Proceedings of the National Academy of Sciences, U. S. A 78:6121–6125
    [Google Scholar]
  39. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  40. Schick J., Doerfler W. 1979; High molecular weight virus DNA in KB cells infected with ts mutants of adenovirus type 2 under permissive and non-permissive conditions. Journal of General Virology 43:217–222
    [Google Scholar]
  41. Schick J., Baczko K., Fanning E., Groneberg J., Burger H., Doerfler W. 1976; Intracellular forms of adenovirus DNA: integrated form of adenovirus DNA appears early in productive infection. Proceedings of the National Academy of Sciences, U. S. A 73:1043–1047
    [Google Scholar]
  42. Sergeant A., Tigges M., Raskas H. J. 1979; Nucleosome-like structural subunit of intranuclear parental adenovirus 2 DNA. Journal of Virology 29:888–898
    [Google Scholar]
  43. Shimojo H., Yamashita T. 1968; Induction of DNA synthesis by adenoviruses in contact-inhibited hamster cells. Virology 36:422–433
    [Google Scholar]
  44. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  45. Stillman B. W., White E., Grodzicker T. 1984; Independent mutations in Ad2 ts 111 cause degradation of cellular DNA and defective viral DNA replication. Journal of Virology 50:598–605
    [Google Scholar]
  46. Subramanian T., Kuppuswamy M., Mak S., Chinnadurai G. 1984; Adenovirus cyt+ locus, which controls cell transformation and tumorigenicity, is an allele of lp+ locus, which codes for a 19-Kilodalton tumor antigen. Journal of Virology 52:336–343
    [Google Scholar]
  47. Takemori N. J., Riggs L., Aldrich C. 1968; Genetic studies with tumorigeneic adenovirus type 12. Virology 35:575–586
    [Google Scholar]
  48. Tate V. E., Philipson L. 1979; Parental adenovirus DNA accumulates in nucleosome-like structures in infected cells. Nucleic Acids Research 6:2769–2785
    [Google Scholar]
  49. Tsang L. W. L., Marusyk R. G. 1980; Purification and partial characterization of a 33, 000 molecular weight endonuclease associated with human adenovirus type 5. Canadian Journal of Microbiology 26:1224–1231
    [Google Scholar]
  50. Van Der Vliet P. C., Levine A. J., Ensinger M. J., Ginsberg H. S. 1975; Thermolabile DNA-binding proteins from cells infected with a temperature-sensitive mutant of adenovirus defective in viral DNA synthesis. Journal of Virology 15:348–354
    [Google Scholar]
  51. Van ROY F., Fiers W. 1978; Interference with SV40 replication by adenovirus type 2 during mixed infection of monkey cells. Journal of Virology 21:275–287
    [Google Scholar]
  52. White E., Grodzicker T., Stillman B. W. 1984; Mutation in the gene encoding the adenovirus E1B 19K tumor antigen causes the degradation of chromosomal DNA. Journal of Virology 52:410–419
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-66-9-1873
Loading
/content/journal/jgv/10.1099/0022-1317-66-9-1873
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error