1887

Abstract

SUMMARY

We have defined the boundaries of the sequence from human cytomegalovirus (CMV) strain Towne, characterized internal variability and determined the position of the cleavage site used to generate genomic termini. The cleavage site is positioned a fixed distance from two stretches of sequence homology that have been observed near the ends of many herpesvirus genomes. Unlike a comparable region in CMV (AD169), the CMV (Towne) sequence has a relatively low level of variability within the sequence and its structure is stable through repeated virus passage.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-8-2223
1987-08-01
2024-05-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/8/JV0680082223.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-8-2223&mimeType=html&fmt=ahah

References

  1. Albrecht M., Darai G., Flugel R. M. 1985; Analysis of the genomic termini of tupaia herpesvirus DNA by restriction mapping and nucleotide sequencing. Journal of Virology 56:466–474
    [Google Scholar]
  2. Bankier A. T., Dietrich W., Baer R., Barrell B. G., Colbere-Garapin .F., Fleckenstein B., Bodemer W. 1985; Terminal repetitive sequences in herpesvirus saimiri virion DNA. Journal of Virology 55:133–139
    [Google Scholar]
  3. Davison A. J. 1984; Structure of the genome termini of variceUa-zoster virus. Journal of General Virology 65:1969–1977
    [Google Scholar]
  4. Davison A. J., Wilkie N. M. 1981; Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. Journal of General Virology 55:315–331
    [Google Scholar]
  5. Deiss L. P., Frenkel N. 1986; Herpes simplex virus amplicon: cleavage of concatemeric DNA is linked to packaging and involves amplification of the terminally reiterated a sequence. Journal of Virology 57:933–941
    [Google Scholar]
  6. Deiss L. P., Chou J., Frenkel N. 1986; Functional domains within the a sequence involved in the cleavagepackaging of herpes simplex virus DNA. Journal of Virology 59:605–618
    [Google Scholar]
  7. Locker H., Frenkel N. 1979; Band, Kpnl and Sall restriction enzyme maps of the DNAs of herpes simplex virus strains Justin and F: occurrence of heterogeneities in defined regions of the viral DNA. Journal of Virology 32:429–441
    [Google Scholar]
  8. Matsuo T., Heller M., Petti L., Oshiro E., Kieff E. 1984; Persistence of the entire Epstein-Barr virus genome integrated into human lymphocyte DNA. Science 226:1322–1324
    [Google Scholar]
  9. Maxam A. M., Gilbert W. 1980; Sequencing end-labeled DNA with base-specific chemical cleavages. Methods in Enzymology 65:499–560
    [Google Scholar]
  10. Mocarski E. S., Roizman B. 1981; Site-specific inversion sequence of herpes simplex virus genome: domain and structural features. Proceedings of the National Academy of Sciences U.S.A.: 787047–7051
    [Google Scholar]
  11. Mocarski E. S., Roizman B. 1982; Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell 31:89–97
    [Google Scholar]
  12. Mocarski E. S., Deiss L. P., Frenkel N. 1985a; Nucleotide sequence of a novel Us-a junction present in a defective herpes simplex virus genome. Journal of Virology 55:140–146
    [Google Scholar]
  13. Mocarski E. S., Pereira L., Michael N. 1985b; Precise mapping of genes on large animal virus genomes: use of λgtl1 and monoclonal antibodies to map the gene for a cytomegalovirus protein family. Proceedings of the National Academy of Sciences U.S.A.: 821266–1270
    [Google Scholar]
  14. Roizman B. 1979; Structure and isomerization of herpes simplex virus genomes. Cell 16:481–494
    [Google Scholar]
  15. Roizman B. 1980; Genomic variation and evolution among herpesviruses. Annals of the New York Academy of Sciences 354:472–483
    [Google Scholar]
  16. Roizman B., Batterson W. 1985; Herpesviruses and their replication. In Virology pp 497–526 Fields B. N. Edited by New York: Raven Press;
    [Google Scholar]
  17. Roizman B., Carmichael L. E., Deinhardt F., De-The G., Nahmias A. J., Plowright W., Rapp F., Sheldrick P., Takahashi M., Wolk K. 1981; Herpesviridae. Intervirology 16:201–217
    [Google Scholar]
  18. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  19. Spaete R. R., Frenkel N. 1982; The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning- amplifying vector. Cell 30:295–304
    [Google Scholar]
  20. Spaete R. R., Frenkel N. 1985; The herpes simplex virus amplicon: analysis of as-acting replication functions. Proceedings of the National Academy of Sciences U.S.A.: 82694–698
    [Google Scholar]
  21. Spaete R. R., Mocarski E. S. 1984; Trans-acting function encoded by herpes simplex virus-1 recognize cis cleavage/packaging signals on cytomegalovirus DNA. In Herpesvirus: UCLA Symposia on Molecular and Cellular Biology, new series 21 pp 359–372 Rapp F. Edited by New York: Alan R. Liss;
    [Google Scholar]
  22. Spaete R. R., Mocarski E. S. 1985a; The a sequence of the cytomegalovirus genome functions as a cleavage/packaging signal for herpes simplex virus defective genomes. Journal of Virology 54:817–824
    [Google Scholar]
  23. Spaete R. R., Mocarski E. S. 1985b; Regulation of cytomegalovirus gene expression: α and β promoters are trans activated by viral functions in permissive human fibroblasts. Journal of Virology 56:135–143
    [Google Scholar]
  24. Stinski M. F. 1983; The molecular biology of cytomegaloviruses. In The Herpesviruses 2 pp 67–113 Roizman B. Edited by New York: Plenum Press;
    [Google Scholar]
  25. Stow N. D., McMonagle E. C., Davison A. J. 1983; Fragments from both termini of the herpes simplex virus type 1 genome contain signals required for the encapsidation of viral DNA. Nucleic Acids Research 11:8205–8220
    [Google Scholar]
  26. Tamashiro J. C., Spector D. H. 1986; Terminal structure and heterogeneity in human cytomegalovirus strain AD169. Journal of Virology 59:591–604
    [Google Scholar]
  27. Tamashiro J. C., Filpula D., Friedmann T., Spector D. H. 1984; Structure of the heterogeneous L-S region of human cytomegalovirus strain AD169 DNA. Journal of Virology 52:541–548
    [Google Scholar]
  28. Van Den Berg F. M., Van Ooyen A. J. J., Volkers H., Walboomers J. M. M. 1984; Heterogeneity in subregions of the terminal repeats of herpes simplex virus type 2 DNA. Intervirology 21:96–103
    [Google Scholar]
  29. Varmuza S. L., Smiley J. R. 1985; Signals for site-specific cleavage of HSV DNA: Maturation involves two separate cleavage events at sites distal to the recognition sequences. Cell 41:793–802
    [Google Scholar]
  30. Vlazny D. A., Frenkel N. 1981; Replication of herpes simplex virus DNA: localization of replication recognition signals within defective virus genomes. Proceedings of the National Academy of Sciences U.S.A.: 78742–746
    [Google Scholar]
  31. Wagner M. J., Summers W. C. 1978; Structure of the joint region and the termini of the DNA of herpes simplex virus type 1. Journal of Virology 27:374–387
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-8-2223
Loading
/content/journal/jgv/10.1099/0022-1317-68-8-2223
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error