1887

Abstract

Rubella virus contains two envelope glycoproteins, E1 and E2. The amino acid sequence for both glycoproteins is known, as is the number of -glycosylation sites. This study has demonstrated the presence of -linked carbohydrates bound to E2 and determined structural characteristics of the -linked oligosaccharide chains. -linked sugars were found to be resistant to digestion with -glycanase but sensitive to beta-elimination with alkaline borohydride. After treatment with neuraminidase, -linked sugars bound to peanut agglutinin, suggesting the presence of the disaccharide galactose--acetylgalactosamine, masked by sialic acid. The -linked oligosaccharides were large, probably four-branched, and showed a lectin binding pattern suggesting the complex type, with terminal Gal, GlcNAc and sialic acid. No Endo H-sensitive carbohydrates were detected.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-4-843
1991-04-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/4/JV0720040843.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-4-843&mimeType=html&fmt=ahah

References

  1. Baenziger J. U., Fiete D. 1979; Structural determinants of concanavalin A specificity for oligosaccharides. Journal of Biological Chemistry 254:2400–2407
    [Google Scholar]
  2. Bowden D. S., Westaway E. G. 1984; Rubella virus: structural and non-structural proteins. Journal of General Virology 65:933–943
    [Google Scholar]
  3. Bowden D. S., Westaway E. G. 1985; Changes in glycosylation of rubella virus envelope proteins during maturation. Journal of General Virology 66:201–206
    [Google Scholar]
  4. Clarke D. M., Loo T. W., Hui I., Chong P., Gillam S. 1987; Nucleotide sequence and in vitro expression of rubella virus 24S subgenomic messenger RNA encoding the structural proteins E1, E2 and C. Nucleic Acids Research 15:3041–3057
    [Google Scholar]
  5. Debray H., Strecker G., Montreuil J. 1984; Effect of alkalis on N-glycosidic linkages of glycoproteins. Biochemical Society Transactions 12:611–612
    [Google Scholar]
  6. Dorsett P. H., Miller D. C., Green K. Y., Byrd F. I. 1985; Structure and function of the rubella virus proteins. Reviews of Infectious Diseases 7: (supplement) s150–s156
    [Google Scholar]
  7. Etchison J. R., Robertson J. S., Summers D. F. 1977; Partial structural analysis of the oligosaccharide moieties of the vesicular stomatitis virus glycoprotein by sequential chemical and enzymatical degradation. Virology 78:375–392
    [Google Scholar]
  8. Frey T. K., Marr L. D. 1988; Sequence of the region coding for virion proteins C and E2 and the carboxy terminus of the nonstructural proteins of rubella virus: comparison with alphaviruses. Gene 62:85–99
    [Google Scholar]
  9. Fukuda M. N., Dell A., Scartezzini P. 1987; Primary defect of congenital dyserythropoietic anemia type II. Failure in glycosylation of erythrocyte lactosaminoglycan proteins caused by lowered N- acetylglucosaminyltransferase II. Journal of Biological Chemistry 262:7195–7206
    [Google Scholar]
  10. Fukuda M., Guan J. L., Rose J. K. 1988; A membrane-anchored form but not the secretory form of human chorionic gonadotropin-alpha chain acquires polylactosaminoglycan. Journal of Biological Chemistry 263:5314–5318
    [Google Scholar]
  11. Goldstein I. J., Hayes C. E. 1978; The lectins: carbohydrate-binding proteins of plants and animals. Advances in Carbohydrate Chemistry and Biochemistry 35:127–340
    [Google Scholar]
  12. Hanover J. A., Lennarz W. J., Young J. D. 1980; Synthesis of N- and O-linked glycopeptides in oviduct membrane preparations. Journal of Biological Chemistry 255:6713–6716
    [Google Scholar]
  13. Hobman T. C., Gillam S. 1989; In vitro and in vivo expression of rubella virus glycoprotein E2: the signal peptide is contained in the C-terminal region of capsid protein. Virology 173:241–250
    [Google Scholar]
  14. Hobman T. C., Lundstrom M. L., Gillam S. 1990; Processing and transport of rubella virus structural proteins in transfected COS cells. Virology 78:375–392
    [Google Scholar]
  15. Holmes K. V., Doller E. W., Sturman L. S. 1981; Tunicamycin resistant glycosylation of a coronavirus glycoprotein: demonstration of a novel type of viral glycoprotein. Virology 115:334–344
    [Google Scholar]
  16. Ho-Terry L., Cohen A. 1984; The role of glycosylation on haemagglutination and immunological reactivity of rubella virus. Archives of Virology 79:139–146
    [Google Scholar]
  17. Hovi T., Vaheri A. 1970; Infectivity and some physicochemical characteristics of rubella virus ribonucleic acid. Virology 42:1–8
    [Google Scholar]
  18. Hubbard S. C. 1988; Regulation of glycosylation: the influence of protein structure on N-inked oligosaccharide processing. Journal of Biological Chemistry 263:19303–19317
    [Google Scholar]
  19. Iyer R. N., Carlson D. M. 1971; Alkaline borohydride degradation of blood group H substance. Archives of Biochemistry and Biophysics 142:101–105
    [Google Scholar]
  20. Johnson D. C., Spear P. G. 1983; O-linked oligosaccharides are acquired by herpes simplex virus in the Golgi apparatus. Cell 32:987–997
    [Google Scholar]
  21. Kari B., Gehrz R. 1988; Isolation and characterization of a human cytomegalovirus glycoprotein containing a high content of O-linked oligosaccharides. Archives of Virology 98:171–188
    [Google Scholar]
  22. Kobata A. 1979; Use of endo-and exoglycosidases for structural studies of glycoconjugates. Analytical Biochemistry 100:1–14
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  24. Lundström M., Olofsson S., Jeansson S., Lycke E., Datema R., Mansson J. -E. 1987; Host cell induced differences in O-glycosylation of herpes simplex virus gC-1. I. Structures of non-sialylated HPA- and PNA-binding carbohydrates. Virology 161:385–394
    [Google Scholar]
  25. Månsson J.-E., Olofsson S. 1983; Binding specificities of the lectins from Helix pomatia, soybean and peanut against different glycosphingolipids in liposome membranes. FEBS Letters 156:249–252
    [Google Scholar]
  26. Momoi T., Tokunaga T., Nagai Y. 1982; Specific interaction of peanut agglutinin with the glycolipid asialo GM1. FEBS Letters 141:6–10
    [Google Scholar]
  27. Niemann H., Klenk H. D. 1981; Coronavirus glycoprotein El, a new type of viral glycoprotein. Journal of Molecular Biology 153:993–1010
    [Google Scholar]
  28. Ogata S., MuramaTsu T., Kobata A. 1975; Fractionation of glycopeptides by affinity column chromatography on concanavalin A–Sepharose. Journal of Biochemistry 78:687–696
    [Google Scholar]
  29. Oker-Blom C., Kalkkinen N., Kääriänen L., Pettersson R. F. 1983; Rubella virus contains one capsid protein and three envelope glycoproteins, E1, E2a and E2b. Journal of Virology 46:964–973
    [Google Scholar]
  30. Oker-Blom C., Ulmanen I., Kääriäinen L., Pettersson R. F. 1984; Rubella virus 40S genome RNA specifies a 24S subgenomic mRNA that codes for a precursor to structural proteins. Journal of Virology 49:403–408
    [Google Scholar]
  31. Olofsson S., Blomberg J., Lycke E. 1981; O-glycosidic carbohydrate-peptide linkages of herpes simplex virus glycoproteins. Archives of Virology 70:321–329
    [Google Scholar]
  32. Osawa T., Tsuji T. 1987; Fractionation and structural assessment of oligosaccharides and glycopeptides by use of immobilized lectins. Annual Review of Biochemistry 56:21–42
    [Google Scholar]
  33. Pereira M. E. A., Rabat E. A., Lotan R., Sharon N. 1976; Immunochemical studies on the specificity of the peanut (Arachis hypogaea) agglutinin. Carbohydrate Research 51:107–118
    [Google Scholar]
  34. Rasilo M. L., Renkonen O. 1981; Mild alkaline borohydride treatment liberates N-acetylglucosamine linked oligosaccharide chains of glycoproteins. FEBS Letters 135:38–42
    [Google Scholar]
  35. Serafini-Cessi F., Dall’Olio F., Scannavini M., Costanzo F., Campadelli-Fiume G. 1983; N-acetylgalactosaminyltransferase activity involved in O-glycosylation of herpes simplex virus type 1 glycoproteins. Journal of Virology 48:325–329
    [Google Scholar]
  36. Shida H., Dales S. 1981; Biogenesis of vaccinia virus: carbohydrate of the hemagglutinin molecule. Virology 111:56–72
    [Google Scholar]
  37. Sjöblom I., Lundström M., Sjögren-Jansson E., Glorioso J. C., Jeansson S., Olofsson S. 1987; Demonstration and mapping of highly carbohydrate-dependent epitopes in the herpes simplex virus type 1-specified glycoprotein C. Journal of General Virology 68:545–554
    [Google Scholar]
  38. Spielman J., Rockley N. L., Carraway K. L. 1987; Temporal aspects of O-glycosylation and cell surface expression of ascites sialoglycoprotein-1, the major cell surface sialomucin of 13762 mammary ascites tumor cells. Journal of Biological Chemistry 262:269–275
    [Google Scholar]
  39. Strous G. J. A. M. 1979; Initial glycosylation of proteins with acetylgalactosaminyl–serine linkages. Proceedings of the National Academy of Sciences, U S A 76:2694–2698
    [Google Scholar]
  40. Tabas I., Kornfeld S. 1978; The synthesis of complex-type oligosaccharides. III. Identification of an alpha-D-mannosidase activity involved in a late stage of processing of complex-type oligosaccharides. Journal of Biological Chemistry 253:7779–7786
    [Google Scholar]
  41. Takeuchi M., Inoue N., Strickland T. W., Kubota M., Wada M., Shimizu R., Hoshi S., Kozutsumi H., Takasaki S., Kobata A. 1989; Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells. Proceedings of the National Academy of Sciences, U.S.A 86:7819–7822
    [Google Scholar]
  42. Tarentino A. L., Gomez C. M., Plumer T. H. Jr 1985; Deglycosylation of asparagine-linked glycans by peptide :N- glycosidase F. Biochemistry 24:4665–4671
    [Google Scholar]
  43. Vidgren G., Takkinen K., Kalkkinen N., Kääriäinen L., Pettersson R. F. 1987; Nucleotide sequence of the genes coding for the membrane glycoproteins E1 and E2 of rubella virus. Journal of General Virology 68:2347–2357
    [Google Scholar]
  44. Waxham M. N., Wolinsky J. S. 1985; A model of the structural organization of rubella virions. Reviews of Infectious Diseases 7: (Supplement) s133–s139
    [Google Scholar]
  45. Williams M. A., Lamb R. A. 1988; Polylactosaminoglycan modification of a small integral membrane glycoprotein, influenza B virus NB. Molecular and Cellular Biology 8:1186–1196
    [Google Scholar]
  46. Woodward M. P., Young W. W. Jr, Bloodgood R. A. 1985; Detection of monoclonal antibodies specific for carbohydrate epitopes using periodate oxidation. Journal of Immunological Methods 78:143–153
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-4-843
Loading
/content/journal/jgv/10.1099/0022-1317-72-4-843
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error