1887

Abstract

A speculative model for reverse transcription of a viral RNA template into proviral dsDNA is presented. It has two essential features that are not included in current models: (i) the functional complex is dimeric, with two polymerization/RNase H sites and (ii) two templates are initially attached to the complex at their 3′ ends. The model also has the optional features that (iii) the complex is rotationally symmetrical and (iv) attached to the virion core. The model attempts to explain why the viral genome is dimeric, the specificity of the ‘jumps’ between the ends of templates and how recombination occurs so readily. It also suggests novel targets for drug therapy during retroviral infection, for example, in AIDS.

Erratum

An erratum has been published for this content:
A model for reverse transcription by a dimeric enzyme
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-4-691
1993-04-01
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/4/JV0740040691.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-4-691&mimeType=html&fmt=ahah

References

  1. Annan N. K., Cook P. R., Mullins S. T., Lowe G. 1992; Evidence for cross-linking DNA by bis-intercalators with rigid and extended linkers is provided by knotting and catenation. Nucleic Acids Research 20:983–990
    [Google Scholar]
  2. Argos P. 1988; A sequence motif in many polymerases. Nucleic Acids Research 16:9909–9916
    [Google Scholar]
  3. Barat C., Lullien V., Schatz O., Keith G., Nugeyre M. T., Barre-Sinoussi F., LeGrice S. FJ., Darlix J. L. 1989; HIV-1 reverse transcriptase specifically interacts with the anticodon domain of its cognate primer tRNA. EMBO Journal 8:3279–3285
    [Google Scholar]
  4. Ben-Artzi H., Zeelon E., Gorecki M., Panet A. 1992; Doublestranded RNA-dependent RNAase activity associated with human immunodeficiency virus type 1 reverse transcriptase. Proceedings of the National Academy of Sciences, U.S.A. 89:927–931
    [Google Scholar]
  5. Bender W., Chien Y. H., Chattopadhyay S., Vogt P. K., Gardner M. B., Davidson N. 1978; High-molecular-weight RNAs of AKR, NZB, and wild mouse viruses and avian ret-iculoendotheliosis viruses all have similar dimer structures. Journal of Virology 25:888–896
    [Google Scholar]
  6. Bieth E., Gabus C., Darlix J. L. 1990; A study of the dimer formation of Rous sarcoma virus RNA and of its effect on viral protein synthesis in vitro. Nucleic Acids Research 18:119–127
    [Google Scholar]
  7. Boone L. R., Skalka A. M. 1981; Viral DNA synthesis in vitro by avian retrovirus particles permeabilized with melittin: I. Kinetics of synthesis and size of minus- and plus-strand transcripts. Journal of Virology 37:109–116
    [Google Scholar]
  8. Bowerman B., Brown P. O., Bishop J. M., Varmus H. E. 1989; A nucleoprotein complex mediates the integration of retroviral DNA. Genes and Development 3:469–478
    [Google Scholar]
  9. Burns N. R., Saibil H. R., White N. S., Pardon J. F., Timmins P. A., Richardson S. MH., Richards B. M., Adams S. E., Kingsman S. M., Kingsman A. J. 1992; Symmetry, flexibility and permeability in the structure of yeast retrotransposon viruslike particles. EMBO Journal 11:1155–1164
    [Google Scholar]
  10. Charneau P. C., Alizon M., Clavel F. 1992; A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. Journal of Virology 66:2814–2820
    [Google Scholar]
  11. Coffin J. M. 1979; Structure, replication and recombination of retrovirus genomes: some unifying hypotheses. Journal of General Virology 42:1–26
    [Google Scholar]
  12. Cook P. R. 1989; The nucleoskeleton and the topology of transcription. European Journal of Biochemistry 185:487–501
    [Google Scholar]
  13. Cook P. R. 1991; The nucleoskeleton and the topology of replication. cell 66:627–635
    [Google Scholar]
  14. Craigie R., Fujiwara T., Bushman F. 1990; The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro. cell 62:829–837
    [Google Scholar]
  15. Fields B. N. 1990 Virology vol II New York: Raven Press;
    [Google Scholar]
  16. Fu T. B., Taylor J. 1992; When retroviral reverse transcriptases reach the end of their RNA templates. Journal of Virology 66:4271–4278
    [Google Scholar]
  17. Furfine E. S., Reardon J. E. 1991; Reverse transcriptase. RNAse H from the human immunodeficiency virus: relationship of the DNA polymerase and RNA hydrolysis activities. Journal of Biological Chemistry 266:406–412
    [Google Scholar]
  18. Gilboa E., Mitra S. W., Goff S., Baltimore D. 1979; A detailed model of reverse transcription and tests of crucial aspects. cell 18:93–100
    [Google Scholar]
  19. Goodrich D. W., Duesberg P. H. 1990; Retroviral recombination during reverse transcription. Proceedings of the National Academy of Sciences, U.S.A. 87:2052–2056
    [Google Scholar]
  20. Hu W. S., Temin H. M. 1990a; Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proceedings of the National Academy of Sciences, U.S.A. 87:1556–1560
    [Google Scholar]
  21. Hu W. S., Temin H. M. 1990b; Retroviral recombination and reverse transcription. Science 250:1227–1233
    [Google Scholar]
  22. Huber H. E., Richardson C. C. 1990; Processing of the primer for plus strand DNA synthesis by human immunodeficiency virus 1 reverse transcriptase. Journal of Biological Chemistry 265:10565–10573
    [Google Scholar]
  23. Jacobo-Molina A., Arnold E. 1991; HIV reverse transcriptase structure-function relationships. Biochemistry 30:6351–6361
    [Google Scholar]
  24. Katz R. A., Merkel G., Kulkosky J., Leis J., Skalka A. M. 1990; The avian retroviral IN protein is both necessary and sufficient for integrative recombination in vitro. cell 63:87–95
    [Google Scholar]
  25. Kohlstaedt L. A., Wang J., Friedman J. M., Rice P. A., Steitz T. A. 1992; 3-5 Angstrom resolution crystal structure of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256:1783–1790
    [Google Scholar]
  26. Lavie G., Valentine F., Levin B., Mazur Y., Gallo G., La vie D., Weiner D., Meruelo D. 1989; Studies on the mechanisms of action of the antiretroviral agents hypericin and pseudohypericin. Proceedings of the National Academy of Sciences, U.S.A. 86:5963–5967
    [Google Scholar]
  27. Layne S. P., Merges M. J., Dembo M., Spouge J. L., Conley S. R., Moore J. P., Raina J. L., Rbnz H., Gelderblom H. R., Nara P. L. 1992; Factors underlying spontaneous inactivation and susceptibility to neutralization of human immunodeficiency virus. Virology 189:695–714
    [Google Scholar]
  28. Luo G., Taylor J. 1992; Template switching by reverse transcriptase during DNA synthesis. Journal of Virology 64:4321–1328
    [Google Scholar]
  29. Mitsuya H., Yarchoan R., Broder S. 1990; Molecular targets for AIDS therapy. Science 249:1533–1544
    [Google Scholar]
  30. Oyama F., Kikuchi R., Crouch R. J., Uchida T. 1989; Intrinsic properties of reverse transcriptase in reverse transcription. Journal of Biological Chemistry 264:18808–18817
    [Google Scholar]
  31. Panganiban A. T., Fiore D. 1988; Ordered interstrand and intrastrand DNA transfer during reverse transcription. Nucleic Acids Research 241:1064–1069
    [Google Scholar]
  32. Prats A. C., Roy C., Wang P., Erard M., Housset V., Gabus C., Paoletti C., Darlix J. L. 1990; ciselements and trans-acting factors involved in dimer formation of murine leukemia virus RNA. Journal of Virology 64:774–783
    [Google Scholar]
  33. Restle T., Muller B., Goody R. S. 1990; Dimerization of human immunodeficiency virus type 1 reverse transcriptase: a target for chemotherapeutic intervention. Journal of Biological Chemistry 265:8986–8988
    [Google Scholar]
  34. Stuhlmann H., Berg P. 1992; Homologous recombination of copackaged retrovirus RNAs during reverse transcription. Journal of Virology 66:2378–2388
    [Google Scholar]
  35. Varmus H. E., Heasley S., Kung H. J., Opperman H., Smith V. C., Bishop J. M., Shank P. R. 1978; Kinetics of synthesis, structure and purification of avian sarcoma virus-specific DNA made in the cytoplasm of acutely infected cells. Journal of Molecular Biology 120:55–82
    [Google Scholar]
  36. Veronese F., di M., Copeland T. D., Devico A. L., Rahman R., Oroszlan S., Gallo R. C., Sarngadharan M. G. 1986; Characterization of highly immunogenic p66/p51 as the reverse transcriptase of HTLV-III/LAV. Science 231:1289–1291
    [Google Scholar]
  37. Wohrl B. M., Moelling K. 1990; Interaction of HIV-1 ribonuclease H with polypurine tract containing RNA–DNA hybrids. Biochemistry 29:10141–10147
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-4-691
Loading
/content/journal/jgv/10.1099/0022-1317-74-4-691
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error