1887

Abstract

Epstein-Barr virus (EBV) glycoprotein gp110 has substantial structural and sequence homology with herpes simplex virus (HSV) gB and gBs of other alpha- and betaherpesviruses but unlike HSV gB localizes differently in infected cells and is absent from virions. To facilitate the analysis of EBV gp110, antisera were raised to fragments of gp110 expressed in a bacterial system. They recognized a protein of the predicted size in recombinant bacterial lysates, in lymphoblastoid cells and in recombinant vaccinia virus-gp110 infected cells. gp110 from all sources possessed a high-mannose type of -glycosylation implying that gp110 has not passed through the Golgi. Immunofluorescence and immuno-electron microscopy confirmed this conclusion and demonstrated that, in contrast to HSV gB, the majority of immunoreactive gp110 was present at the nuclear membrane or endoplasmic reticulum (ER) but not at the cell membrane. Unexpectedly, a truncated version of gp110 lacking the hydrophobic C-terminal region, despite forming dimers analogous to HSV dimers, was transported in a similar manner to full-length gp110. Two chimeric proteins constructed by replacing the N- and C-terminal domains of gp110 with corresponding regions of gp340/220 were also transported to the nuclear membrane/ER. These data suggest that unlike HSV gB both the N- and C-terminal portions of EBV gp110 contain independent signals sufficient to direct the molecule to the ER/nuclear membrane. Specific transport of gammaherpesvirus gB homologues to the nuclear membrane, from where herpesviruses bud, suggests that they may be involved in the egress of virus from the nucleus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-9-2179
1997-09-01
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/9/9292005.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-9-2179&mimeType=html&fmt=ahah

References

  1. Ali M. A. 1990; Oligomerization of herpes simplex virus glycoprotein B occurs in the endoplasmic reticulum and 102 amino acid cytosolic domain is dispensable for dimer assembly. Virology 178:588–592
    [Google Scholar]
  2. Ali M. A., Butcher M., Ghosh H. P. 1987; Expression and nuclear envelope localization of biologically active fusion glycoprotein gB of herpes simplex virus in mammalian cells using cloned DNA. Proceedings of the National Academy of Sciences, USA 84:5675–5679
    [Google Scholar]
  3. Arrand J. R., Rymo L., Walsh J. E., Bjorck E., Lindahl T., Griffin B. E. 1981; Molecular cloning of complete Epstein-Barr virus genome as a set of overlapping restriction endonuclease fragments. Nucleic Acids Research 9:2999–3014
    [Google Scholar]
  4. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P., Barrell B. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310:207–211
    [Google Scholar]
  5. Billstrom M. A., Britt W. J. 1995; Postoligomerization folding of human cytomegalovirus glycoprotein B: identification of folding intermediates and importance of disulfide bonding. Journal of Virology 69:7015–7022
    [Google Scholar]
  6. Browne H., Bell S., Minson T., Wilson D. W. 1996; An endoplasmic reticulum-retained herpes simplex virus glycoprotein H is absent from secreted virions : evidence for reenvelopment during egress. Journal of Virology 70:4311–4316
    [Google Scholar]
  7. Cai W., Gu B., Person S. 1988a; Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. Journal of Virology 62:2596–2604
    [Google Scholar]
  8. Cai W., Person S., DebRoy C., Gu B. 1988b; Functional regions and structural features of the gB glycoprotein of herpes simplex virus type 1. Journal of Molecular Biology 201:575–588
    [Google Scholar]
  9. Cantin E. W., Eberle R., Baldick J. L., Moss B., Willey D. E., Notkins A. L., Openshaw H. 1987; Expression of herpes simplex virus 1 glycoprotein B by a recombinant vaccinia virus and protection of mice against lethal herpes simplex virus type 1. Proceedings of the National Academy of Sciences, USA 84:5908–5912
    [Google Scholar]
  10. Chan W. L., Tizard M. L. V., Faulkner L. 1989; Proliferative T-cell response to glycoprotein B of the human herpes viruses: the influence of MHC and sequence of infection on the pattern of cross-reactivity. Immunology 68:96–101
    [Google Scholar]
  11. Chu F. K. 1986; Requirements of cleavage of high mannose oligo-saccharides in glycoproteins by peptide N-glycosidase F. Journal of Biological Chemistry 261:172–177
    [Google Scholar]
  12. Cranage M. P., Kouzarides T., Bankier A. T., Satchwell S., Weston K., Tomlinson P., Barrell B., Hart H., Bell S. E., Minson A. C., Smith G. L. 1986; Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO Journal 5:3057–3063
    [Google Scholar]
  13. DeLuca N., Bzik D. J., Bond V. C., Person S., Snipes W. 1982; Nucleotide sequences of herpes simplex virus type 1 (HSV-1) affecting virus entry, cell fusion, and production of glycoprotein gB (VP7). Virology 122:411–423
    [Google Scholar]
  14. Doms R. W., Lamb R. A., Rose J. K., Helenius A. 1993; Folding and assembly of viral membrane proteins. Virology 193:545–562
    [Google Scholar]
  15. Emini E. A., Luka J., Armstrong M. E., Keller P. M., Ellis R. W., Pearson G. R. 1987; Identification of an Epstein-Barr virus glycoprotein which is antigenically homologous to the varicella-zoster virus glycoprotein II and herpes simplex glycoprotein B. Virology 157:552–555
    [Google Scholar]
  16. Gershon A. A., Sherman D. L., Zhu Z., Gabel C. A., Ambron R. T., Gershon M. D. 1994; Intracellular transport of newly synthesized varicella-zoster virus: final envelopment in the trans-Golgi network. Journal of Virology 68:6372–6390
    [Google Scholar]
  17. Gilbert R., Ghosh K., Rasile L., Ghosh H. P. 1994; Membrane anchoring domain of herpes simplex virus glycoprotein gB is sufficient for nuclear envelope localization. Journal of Virology 68:2272–2285
    [Google Scholar]
  18. Gong M., Kieff E. 1990; Intracellular trafficking of two major Epstein-Barr virus glycoproteins gp350/220 and gp110. Journal of Virology 64:1507–1516
    [Google Scholar]
  19. Gong M., Ooka T., Matsuo T., Kieff E. 1987; Epstein-Barr virus glycoprotein homologues to herpes simplex gB. Journal of Virology 61:499–508
    [Google Scholar]
  20. Harlow E., Lane D. 1988 Antibodies: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Herrold R. E., Marchini A., Freuhling S., Longnecker R. 1996; Glycoprotein 110, the Epstein-Barr virus homolog of herpes simplex virus glycoprotein B, is essential for Epstein-Barr virus replication in vivo. Journal of Virology 70:2049–2054
    [Google Scholar]
  22. Highlander S. L., Cai W. H., Person S., Levine M., Glorioso J. C. 1988; Monoclonal antibodies define a domain of herpes simplex virus glycoprotein B involved in virus penetration. Journal of Virology 62:1881–1888
    [Google Scholar]
  23. Highlander S. L., Goins W. F., Person S., Holland T. C., Levine M., Glorioso J. C. 1991; Olig omer formation of the gB glycoprotein of herpes simplex virus type 1. Journal of Virology 65:4275–4283
    [Google Scholar]
  24. Jilg W., Bogedain C., Mairhofer H., Gu S. Y., Wolf H. 1994; The Epstein-Barr virus-encoded glycoprotein gp 110 (BALF 4) can serve as a target for antibody-dependent cell-mediated cytotoxicity (ADCC). Virology 202:974–977
    [Google Scholar]
  25. Klein G., Giovanella B., Westman A., Stehlin J. S., Mumford D. 1975; An EBV-genome-negative cell line established from an American Burkitt lymphoma; receptor characteristics, EBV infectibility and permanent conversion into EBV-positive sublines by in vitro infection. Intervirology 5:319–334
    [Google Scholar]
  26. Laquerre S., Person S., Glorioso J. C. 1996; Glycoprotein B of herpes simplex virus type 1 oligomerizes through the intermolecular interaction of a 28-amino-acid domain. Journal of Virology 70:1640–1650
    [Google Scholar]
  27. Lee S. K., Longnecker R. 1997; The Epstein-Barr virus glycoprotein gp110 carboxy-terminal tail domain is essential for lytic virus replication. Journal of Virology 71:4092–4097
    [Google Scholar]
  28. Li Q. X., Young L. S., Niedobitek G., Dawson C. W., Birkenbach M., Wang F., Rickinson A. B. 1992; Epstein-Barr virus infection and replication in a human epithelial cell system. Nature 356:347–350
    [Google Scholar]
  29. Lin X. H., Openshaw H., Cantin E. M. 1996; Deletion of the carboxy-terminus of herpes simplex type 1 (HSV-1) glycoprotein B does not affect oligomerization, heparin-binding activity, or its ability to protect against HSV challenge. Archives in Virology 141:1153–1165
    [Google Scholar]
  30. McGeoch D. J., Cook S., Dolan A., Jamieson F. E., Telford E. A. 1995; Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses. Journal of Molecular Biology 247:443–458
    [Google Scholar]
  31. Mackett M. 1995 In DNA Cloning 4, A Practical Approach pp. 43–83 Glover D. M., Hames B. D. Edited by Oxford: IRL Press;
    [Google Scholar]
  32. Mackett M., Arrand J. R. 1985; Recombinant vaccinia virus induces? neutralising antibodies in rabbits against Epstein-Barr virus membrane antigen gp340. EMBO Journal 4:3229–32234
    [Google Scholar]
  33. Mackett M., Smith G. L., Moss B. 1984; General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. Journal of Virology 49:857–864
    [Google Scholar]
  34. Massaer M., Haumont M., Place M., Bollen A., Jacobs P. 1993; Induction of neutralizing antibodies by varicella-zoster virus gpII glycoprotein expressed from recombinant vaccinia virus. Journal of General Virology 74:491–494
    [Google Scholar]
  35. Mettenleiter T. C., Spear P. G. 1994; Glycoprotein gB(gII) of pseudorabies virus can functionally substitute for glycoprotein gB in herpes simplex virus type 1. Journal of Virology 68:500–504
    [Google Scholar]
  36. Misra V., Nelson R., Smith M. 1988; Sequence of a bovine herpesvirus type-1 glycoprotein gene that is homologous to the herpes simplex gene for the glycoprotein gB. Virology 166:542–549
    [Google Scholar]
  37. Poliquin L., Levine G., Shore G. C. 1985; Involvement of the Golgi apparatus and a restructured nuclear envelope during biogenesis and transport of herpes simplex virus glycoproteins. Journal of Histology and Cytology 33:875–883
    [Google Scholar]
  38. Pulvertaft R. J. V. 1964; Cytology of Burkitt’s tumour (African lymphoma). Lancet i:238–240
    [Google Scholar]
  39. Qadri I., Gimeno C., Navarro D., Pereira L. 1991; Mutation in conformation-dependent domains of herpes simplex virus 1 glycoprotein B affect the antigenic properties, dimerization, and transport of the molecule. Virology 180:135–152
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Stewart J. P., Rooney C. M. 1992; The interleukin-10 homolog encoded by Epstein-Barr virus enhances the reactivation of virus-specific cytotoxic T cell and HLA-unrestricted killer cell responses. Virology 191:773–782
    [Google Scholar]
  42. Stewart J. P., Janjua N. J., Sunil-Chandra N. P., Nash A. A., Arrand J. R. 1994; Characterization of murine gammaherpesvirus 68 glycoprotein B (gB) homolog: similarity to Epstein-Barr virus gB (gp110). Journal of Virology 68:6496–6504
    [Google Scholar]
  43. Studier F. W. 1991; Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. Journal of Molecular Biology 219:37–44
    [Google Scholar]
  44. Studier F. W., Moffatt B. A. 1986; Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of Molecular Biology 189:113–130
    [Google Scholar]
  45. Stunnenberg H. G., Lange H., Philipson L., van Miltenburg R. T., van der Vliet P. C. 1988; High expression of functional adenovirus DNA polymerase and precursor terminal protein using recombinant vaccinia virus. Nucleic Acids Research 16:2431–2444
    [Google Scholar]
  46. Takada K. 1984; Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus in Burkitt lymphoma lines. International Journal of Cancer 15:27–32
    [Google Scholar]
  47. Tanner J., Whang Y., Sample J., Sears A., Kieff E. 1988; Soluble gp350/220 and deletion mutant glycoproteins block Epstein-Barr virus adsorption to lymphocytes. Journal of Virology 62:4452–4464
    [Google Scholar]
  48. Telford E. A., Watson M. S., Aird H. C., Perry J., Davison A. J. 1995; The DNA sequence of equine herpesvirus 2. Journal of Molecular Biology 249:520–528
    [Google Scholar]
  49. Torrisi M. R., Di Lazzaro C., Pavan A., Pereira L., Campadelli-Fiume G. 1992; Herpes simplex virus envelopment and maturation studies by fracture label. Journal of Virology 66:554–561
    [Google Scholar]
  50. Zhu Z., Gershon M. D., Hao Y., Ambron R. T., Gabel C. A., Gershon A. A. 1995; Envelopment of varicella-zoster virus: targeting of viral glycoproteins to the trans-Golgi. Journal of Virology 69:7951–7959
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-9-2179
Loading
/content/journal/jgv/10.1099/0022-1317-78-9-2179
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error