1887

Abstract

Sequence variations in the E6/E7 (nt 34–880) and the L1 (nt 6584–7035) ORFs, and in the long control region (LCR) (nt 7289–93) of human papillomavirus type 16 (HPV-16) were analysed in five penile carcinoma biopsies obtained from Ugandan patients. Uganda is a country with a high incidence of genital cancers. All five isolates were classified as members of African-1 lineage (Af1) by phylogenetic analysis based on LCR sequences. The E6 gene phylogenetic analysis, however, showed that four isolates fell into a new subclass designated Af1-u. This subclass, characterized by three point mutations located at the 5′ end of the E6 gene with resulting changes in amino acids at positions 10 and 14, is distinguishable from the Af1 class by the absence of synonymous mutations at nt 286 and 289. The nonsynonymous substitution at nt 335 was present in three out of five samples. The E6 Af1 mutation pattern was present in only a single Ugandan HPV-16 isolate. Nucleotide sequence analysis of the E7 and L1 regions did not allow any Af1 subclass identification. The physical state of the viral DNA in these samples was characterized by PCR and Southern blot analysis. Oligonucleotides which enable amplification of the full length E2 region (nt 2734–3872) failed to amplify the target sequence in four out of five samples, suggesting disruption of the E2 ORF and integration of the HPV genome into the human DNA. Southern blot analysis confirmed the virus integration status. Our results contribute to the characterization of the HPV-16 ‘African lineages’ with the identification of the Af1- u subclass; furthermore, this is also the first report showing that in male genital cancers HPV-16 is integrated into the human genome with disruption of the E2 ORF.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-9-2199
1997-09-01
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/9/9292007.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-9-2199&mimeType=html&fmt=ahah

References

  1. Chan S., Ho L., Ong C., Chow V., Drescher B., Dürst M., ter Meulen J., Villa L., Luande J., Mgaya H. N., Bernard H. 1992; Molecular variants of human papillomavirus type 16 from four continents suggest ancient pandemic spread of the virus and its coevolution with humankind. Journal of Virology 66:2057–2066
    [Google Scholar]
  2. Church G. H., Gilbert W. 1984; Genomic sequencing. Proceedings of the National Academy of Sciences, USA 81:1991–1995
    [Google Scholar]
  3. Crook T., Tidy J. A., Vousden K. 1991; Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and transactivation. Cell 67:547–556
    [Google Scholar]
  4. Daniel B., Mukherjee G., Seshadri L., Vallikad E., Krishna S. 1995; Chang es in the physical state and expression of human papillomavirus type 16 in the progression of cervical intraepithelial neoplasia lesions analysed by PCR. Journal of General Virology 76:2589–2593
    [Google Scholar]
  5. de Villiers E. 1994; Human pathogenic papillomavirus types: an update. Current Topics in Microbiology and Immunology 186:1–12
    [Google Scholar]
  6. Dodge O. G., Owor O., Templeton A. C. 1973; Tumors of the male genitalia. In Tumours in a Tropical Country pp. 132–144 Templeton A. C. Edited by Berlin: Springer;
    [Google Scholar]
  7. Dürst M., Gissman L., Ikenberg H., zur Hausen H. 1983; A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proceedings of the National Academy of Sciences, USA 80:3812–3815
    [Google Scholar]
  8. Dyson N., Howley P. M., Munger K., Harlow E. 1989; The human papillomavirus-16E7 oncoprotein is able to bind the retinoblastoma gene product. Science 243:934–937
    [Google Scholar]
  9. Ellis J. R. M., Keating P. J., Baird J., Hounsell E. F., Renouf D. V., Rowe M., Hopkins D., Duggan-Keen M. F., Bartholomew J. S., Young L. S., Stern P. L. 1995; The oncogene with HBLA-B7 has implications for vaccine design in cervical cancer. Nature Medicine 1:464–469
    [Google Scholar]
  10. Eschle D., Dürst M., ter Meulen J., Luande J., Eberhardt H. C., Pawlita M., Gissmann L. 1992; Geographical dependence of sequence variation in the E7 gene of human papillomavirus type 16. Journal of General Virology 73:1829–1832
    [Google Scholar]
  11. Gentile G., Giraldo G., Stabile M., Beth-Giraldo E., Lonardo F., Kyalwazi S. K., Perone L., Ventruto V. 1987; Cytogenetic study of a cell line of human penile cancer. Annales de Genetique 30:164–169
    [Google Scholar]
  12. Gojobori T., Moriyama E. N., Kimura M. 1990; Statistical methods for estimating sequence divergence. Methods in Enzymology 183:531–549
    [Google Scholar]
  13. Ho L., Chan S.-Y., Burk R. D. 19 other authors 1993; The genetic drift of human papillomavirus type 16 is a means of reconstructing prehistoric viral spread and movement of ancient human populations. Journal of Virology 67:6413–6423
    [Google Scholar]
  14. Hsu E. M., McNicol P. J., Guijon F. B., Paraskevas M. 1993; Quantification of HPV-16 E6-E7 transcription in cervical intraepithelial neoplasia by reverse transcriptase polymerase chain reaction. International Journal of Cancer 55:397–401
    [Google Scholar]
  15. IARC 1995 IARC Monographs on the Evaluation of the Carcinogenic Risk ofChemicals to Humans 64 Human Papillomaviruses pp. 47–52 Lyon: International Agency for Research on Cancer, World Health Organization;
    [Google Scholar]
  16. Igenogle J. P., Sathya P., Miller D. L., Tucker R., Rawls W. E. 1991; Nucleotide and amino acid sequence variation in the L1 and E7 open reading frames of human papillomavirus type 6 and type 16. Virology 184:101–107
    [Google Scholar]
  17. Jeon S., Allen-Hoffmann L., Lambert P. F. 1995; Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. Journal of Virology 69:2989–2997
    [Google Scholar]
  18. Kanda T., Watanaba S., Zanna S., Sato H., Furuno A., Yoshiike K. 1991; Human papillomavirus type 16 E6 proteins with glycine substitution for cysteine in the metal-binding motif. Virology 185:536–543
    [Google Scholar]
  19. Kimura M. 1980; A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111–120
    [Google Scholar]
  20. Kirnbauer R., Taub J., Greenstone H., Roden R., Dürst M., Gissmann L., Lowy D. R., Schiller J. T. 1993; Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. Journal of Virology 67:6929–6936
    [Google Scholar]
  21. Krajinović M., Savić A. 1991; Sequencing data on the long control region of human papillomavirus type 16. Journal of General Virology 72:2573–2576
    [Google Scholar]
  22. Lambert P. F., Howley P. M. 1988; Bovine papillomavirus type 1 E1 replication-defective mutants are altered in their transcriptional regulation. Journal of Virology 62:4009–4015
    [Google Scholar]
  23. Lamberti C., Morrissey L. C., Grossmann S. R., Androphy E. J. 1990; Transcriptional activation by the papillomavirus E6 zinc finger protein. EMBO Journal 9:1907–1913
    [Google Scholar]
  24. McCance D. J., Kalache A., Ashdown K., Andrate L., Menzes F., Smith P., Doll R. 1986; Human papillomavirus type 16 and 18 in carcinomas of the penis from Brazil. International Journal of Cancer 37:55–59
    [Google Scholar]
  25. Manos M. M., Ting Y., Wright D. K., Lewis A. J., Broker T. R., Wolinsky S. M. 1989; The use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. Cancer Cells 7:209–214
    [Google Scholar]
  26. Myers G., Bernard H.-U., Delius H., Favre M., Icenogle J., Van Rast M., Wheeler C. editor 1994 Human Papillomaviruses 1994: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences Los Alamos, N.Mex., USA: Los Alamos National Laboratory;
    [Google Scholar]
  27. Myers G., Bernard H.-U., Delius H., Favre M., Icenogle J., Van Rast M., Wheeler C. editor 1996 Human Papillomaviruses 1996: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences Los Alamos, N.Mex., USA: Los Alamos National Laboratory;
    [Google Scholar]
  28. Nei M., Gojobori T. 1986; Simple method for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3:418–426
    [Google Scholar]
  29. Romanczuk H., Howley P. M. 1992; Disruption of either the E1 or the E2 regulatory gene of human papillomavirus type 16 increases viral immortalization capacity. Proceedings of the National Academy of Sciences, USA 89:3159–3163
    [Google Scholar]
  30. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406–425
    [Google Scholar]
  31. Sang B., Barbosa M. S. 1992; Single amino acid substitutions in “low risk” human papillomavirus (HPV) type 6 E7 protein enhances features characteristic of the “high-risk” HPV E7 oncoproteins. Proceedings of the National Academy of Sciences, USA 89:8063–8067
    [Google Scholar]
  32. Scheffner M., Huibregtse J. M., Vierstra R. D., Howley P. M. 1993; The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505
    [Google Scholar]
  33. Scheffner M., Nuber U., Huibregtse J. M. 1995; Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373:81–83
    [Google Scholar]
  34. Schiller J. T., Kleiner E., Androphy E. J., Lowy D. R., Pfister H. 1989; Identification of bovine papillomavirus E1 mutants with increased transforming and transcriptional activity. Journal of Virology 63:1775–1782
    [Google Scholar]
  35. Schwarz E., Freese U. K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., zur Hausen H. 1985; Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314:111–114
    [Google Scholar]
  36. Seedorf K., Krammer G., Dürst M., Suhai S., Rowekamp W. G. 1985; Human papillomavirus type 16 DNA sequences. Virology 145:181–185
    [Google Scholar]
  37. Shibata D. K., Arnheim N., Martin W. J. 1988; Detection of human papillomavirus in paraffin-embedded tissue using the polymerase chain reaction. Journal of Experimental Medicine 167:225–230
    [Google Scholar]
  38. Smits H. L., Traanberg K. F., Krul M. R. L., Prussia P. R., Kuiken C. L., Jebbink M. F., Kleyne J. A. F. W., van den Berg R. H., Capone B., de Bruyn A., ter Schegget J. 1994; Identification of a unique group of human papillomavirus type 16 sequence variants among clinical isolates from Barbados. Journal of General Virology 75:2457–2462
    [Google Scholar]
  39. Tornesello M. L., Buonaguro F. M., Beth-Giraldo E., Kyalwazi S. K., Giraldo G. 1992; Human papillomavirus (HPV) DNA in penile carcinomas and in two cell lines from high-incidence areas for genital cancers in Africa. International Journal of Cancer 51:587–592
    [Google Scholar]
  40. Van de Peer Y., de Wachter R. 1993; TREECON: a software package for the construction and drawing of evolutionary trees. Computer Applications in the Biosciences 9:177–182
    [Google Scholar]
  41. Van Ranst M., Tachezy R., Burk R. D. 1994; Human papillomavirus nucleotide sequences: what’s in stock?. Papillomavirus Report 5:65–75
    [Google Scholar]
  42. Werness B. A., Levine A. J., Howley P. M. 1990; Association of human papillomavirus type 16 and 18 E6 proteins with p53. Science 248:76–79
    [Google Scholar]
  43. Wiener J. S., Effert P. J., Humphrey P. A., Yu L., Liu E. T., Walther P. J. 1992; Prevalence of human papillomavirus types 16 and 18 in squamous-cell carcinoma of the penis : a retrospective analysis of primary and metastatic lesions by differential polymerase chain reaction. International Journal of Cancer 50:694–701
    [Google Scholar]
  44. Winship P. R. 1989; An improved method for directly sequencing PCR amplified material using dimethyl sulphoxide. Nucleic Acids Research 17:1266
    [Google Scholar]
  45. Yamada T., Wheeler C. M., Halpern A. L., Stewart A.-C. M., Hildesheim A., Jenison S. A. 1995; Human papillomavirus type 16 variant lineages in United States populations characterized by nucleotide sequence analysis of the E6, L2 and L1 coding segments. Journal of Virology 69:7743–7753
    [Google Scholar]
  46. zur Hausen H. 1991; Viruses in human cancers. Science 254:1167–1173
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-9-2199
Loading
/content/journal/jgv/10.1099/0022-1317-78-9-2199
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error