1887

Abstract

The UL4 gene of herpes simplex virus type 1 is predicted to encode a 21·5kDa protein of 199 amino acids. Although UL4 is dispensable for growth in cell culture, its function is not known. In the present study, the promoter of UL4 was examined and found to contain a cAMP-response element which bound the transcription factor CREB, and was strongly activated by cAMP. A recombinant virus, termed UL4HS, was constructed with a nonsense linker inserted into the UL4 open reading frame, to make a truncated UL4 protein of 60 amino acids. In addition, a marker-rescued virus, UL4HSMR, was constructed. Western immunoblot analysis revealed a 23 kDa band in extracts of wild-type and marker-rescued virus infected cells which was missing for UL4HS. Only modest differences were observed in the abilities of wild-type and UL4-mutant viruses to grow in Vero cells or in contact-inhibited mouse CH/10T1/2 cells. In addition, there were only modest differences between the ability of UL4HS to replicate in murine corneas and trigeminal ganglia relative to wild-type viruses, and reactivation of UL4HS from latency was unaffected. Taken together, these data demonstrate that UL4 is dispensable for latency and pathogenesis in mice.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-7-1603
1998-07-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/7/9680121.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-7-1603&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment tool. Journal of Molecular Biology 215:403–410
    [Google Scholar]
  2. Baines J. D., Roizman B. 1991; The open reading frames UL3, UL4, UL10, and UL16 are dispensable for the replication of herpes simplex virus 1 in cell culture. Journal of Virology 65:938–944
    [Google Scholar]
  3. Bloom D. C., Stevens J. G., Hill J. M., Tran R. K. 1997; Mutagenesis of a cAMP response element within the latency-associated transcript promoter of HSV-1 reduces adrenergic reactivation. Virology 236:202–207
    [Google Scholar]
  4. Chou J., Kern E. R., Whitley R. J., Roizman B. 1990; Mapping of herpes simplex virus type-1 neurovirulence to γ1 34.5 a gene nonessential for growth in cell culture. Science 250:1262–1266
    [Google Scholar]
  5. Clements J. B., Stow N. D. 1989; A herpes simplex virus type 1 mutant containing a deletion within immediate early gene 1 is latency-competent in mice. Journal of General Virology 70:2501–2506
    [Google Scholar]
  6. Coen D. M., Kosz-Vnenchak M., Jacobson J. G., Leib D. A., Bogard C. L., Schaffer P. A., Tyler K. L., Knipe D. M. 1989; Thymidine kinase negative herpesvirus mutants establish latency in mouse trigeminal ganglia, but do not reactivate. Proceedings of the National Academy of Sciences, USA 86:4736–4740
    [Google Scholar]
  7. Davido D. J., Leib D. A. 1996; Role of cis-acting sequences of the ICP0 promoter of herpes simplex virus type 1 in viral pathogenesis, latency and reactivation. Journal of General Virology 77:1853–1863
    [Google Scholar]
  8. Dean H. J., Cheung A. K. 1994; Identification of the pseudorabies virus UL4 and UL5 (helicase) genes. Virology 202:962–967
    [Google Scholar]
  9. Deb S. P., Deb S., Brown D. R. 1993; Analysis of the promoter sequence of the UL9 gene of herpes simplex virus type 1. Biochemical and Biophysical Research Communications 193:617–623
    [Google Scholar]
  10. DeLuca N. A., Schaffer P. A. 1987; Activities of herpes simplex virus type 1 (HSV-1) ICP4 genes specifying nonsense peptides. Nucleic Acids Research 15:4491–4511
    [Google Scholar]
  11. Gorman C. M., Moffat L. F., Howard B. H. 1982; Recombinant genomes which express chloramphenicol acetyl transferase in mammalian cells. Molecular and Cellular Biology 6:4305–4316
    [Google Scholar]
  12. Hill J. M., Sedarati F., Javier R. T., Wagner E. K., Stevens J. G. 1990; Herpes simplex virus latent phase transcription facilitates in vivo reactivation. Virology 174:117–125
    [Google Scholar]
  13. Jacobson J. G., Leib D. A., Goldstein D. J., Bogard C. L., Schaffer P. A., Weller S. K., Coen D. M. 1989; A herpes simplex virus ribonucleotide reductase mutant is defective for productive acute and reactivatable latent infections in mice and for replication in mouse cells. Virology 173:276–283
    [Google Scholar]
  14. Lee W., Mitchell P., Tjian R. 1987; Purified transcription factor AP- 1 interacts with TPA-inducible enhancer elements. Cell 49:741–752
    [Google Scholar]
  15. Lee K. A. W., Bindereif A., Green M. R. 1988; A small scale procedure for preparation of nuclear extracts that support efficient transcription and pre-RNA splicing. Gene Analysis Techniques 5:22–31
    [Google Scholar]
  16. Leib D. A., Coen D. M., Bogard C. L., Hicks K. A., Yager D. R., Knipe D. M., Tyler K. L., Schaffer P. A. 1989a; Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. Journal of Virology 63:759–768
    [Google Scholar]
  17. Leib D. A., Bogard C. L., Kosz-Vnenchak M., Hicks K. A., Coen D. M., Knipe D. M., Schaffer P. A. 1989b; A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from latency with reduced frequency. Journal of Virology 63:2893–2900
    [Google Scholar]
  18. Leib D. A., Nadeau K. C., Rundle S. A., Schaffer P. A. 1991; Promoter of the latency-associated transcripts of herpes simplex virus type 1 contains a functional cAMP-response element: role of the latency-associated transcripts and cAMP in reactivation of viral latency. Proceedings of the National Academy of Sciences, USA 88:48–52
    [Google Scholar]
  19. McGeoch D. J., Schaffer P. A. 1993; Herpes simplex virus. In Genetic Maps: Locus Maps of Complex Genomes, 3rd edn. pp. 1.147–1.156 O’Brien S. J. Edited by Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. McGeoch D. J., Dalrymple M. A., Davidson A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  21. McLean G. W., Owsianaka A. M., Subak-Sharpe J. K., Marsden H. S. 1991; Generation of anti-peptide and anti-protein sera: effect of peptide presentation on immunogenicity. Journal of Immunological Methods 137:149–157
    [Google Scholar]
  22. Montminy M. R., Gonzalez G. A., Yamamoto K. K. 1990; Regulation of cAMP-inducible genes by CREB. Trends in Neurosciences 13:184–188
    [Google Scholar]
  23. Perng G. C., Dunkel E. C., Geary P. A., Slanina S. M., Ghiasi H., Kaiwar R., Nesburn A. B., Wechsler S. L. 1994; The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency. Journal of Virology 68:8045–8055
    [Google Scholar]
  24. Rader K. A., Ackland-Berglund C. E., Miller J. K., Pepose J. S., Leib D. A. 1993; In vivo characterization of site-directed mutations in the promoter of the herpes simplex virus type 1 latency-associated transcripts. Journal of General Virology 74:1859–1869
    [Google Scholar]
  25. Sawtell N. M., Thompson R. L. 1992; Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency. Journal of Virology 66:2157–2169
    [Google Scholar]
  26. Steiner I., Spivack J. G., Lirette R. P., Brown S. M., MacLean A. R., Subak-Sharpe J. H., Fraser N. W. 1989; Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EMBO Journal 8:505–511
    [Google Scholar]
  27. Stevens J. G., Wagner E. K., Devi-Rao G. B., Cook M. L., Feldman L. T. 1987; RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235:1056–1059
    [Google Scholar]
  28. Strelow L. I., Leib D. A. 1995; Role of the virion host shutoff (vhs) of herpes simplex virus type 1 in latency and pathogenesis. Journal of Virology 69:6779–6786
    [Google Scholar]
  29. Taha M. Y., Clements G. B., Brown S. M. 1989a; A variant of herpes simplex virus type 2 strain HG52 with a 1·5 kb deletion in RL between 0 to 0·02 and 0·81 to 0·83 map units is non-neurovirulent for mice. Journal of General Virology 70:705–716
    [Google Scholar]
  30. Taha M. Y., Clements G. B., Brown S. M. 1989b; The herpes simplex virus type 2 strain HG52 variant JH2604 has a 1488 bp deletion which eliminates neurovirulence in mice. Journal of General Virology 70:3073–3078
    [Google Scholar]
  31. Tam J. P. 1988; Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proceedings of the National Academy of Sciences, USA 85:5409–5413
    [Google Scholar]
  32. Tomazin R., Hill A. B., Jugovic P., York I., van Endert P., Ploegh H. L., Andrews D. W., Johnson D. C. 1996; Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. EMBO Journal 15:3256–3266
    [Google Scholar]
  33. Vlcek C., Benes V., Lu Z., Kutish G. F., Paces V., Rock D., Letchworth G. J., Schwyzer M. 1995; Nucleotide sequence analysis of a 30-kb region of the bovine herpesvirus 1 genome which exhibits a colinear gene arrangement with the UL21 to UL4 genes of herpes simplex virus. Virology 210:100–108
    [Google Scholar]
  34. Wheatley S. C., Dent C. L., Wood J. N., Latchman D. S. 1992; Elevation of cyclic AMP levels in cell lines derived from latently infectable sensory neurons increases their permissivity for herpes virus infection by activating the viral immediate-early 1 gene promoter. Molecular Brain Research 12:149–154
    [Google Scholar]
  35. Wildy P., Field H. J., Nash A. A. 1982; Classical herpes latency revisited. In Virus Persistence pp. 133–167 Mahy B. W. J., Minson A. C., Darby G. K. Edited by Cambridge: Cambridge University Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-7-1603
Loading
/content/journal/jgv/10.1099/0022-1317-79-7-1603
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error