1887

Abstract

Recently, the L1 capsid protein of canine oral papillomavirus (COPV) has been used as an effective systemic vaccine that prevents viral infections of the oral mucosa. The efficacy of this vaccine is critically dependent upon native L1 conformation and, when purified from Sf9 insect cells, the L1 protein not only displays type-specific, conformation-dependent epitopes but it also assembles spontaneously into virus-like particles (VLPs). To determine whether VLP formation was coupled to the expression of conformation-dependent epitopes, we generated a series of N-and C-terminal L1 deletion mutants and evaluated their ability to form VLPs (by electron microscopy) and to react with conformation-dependent antibodies (by immunofluorescence microscopy). We found that ()deletion of the 26 C-terminal residues generated a mutant protein which formed VLPs efficiently and folded correctly both in the cytoplasm and in the nucleus; ()further truncation of the L1 C terminus (67 amino acids) resulted in a capsid protein which formed VLPs but which failed to express conformational epitopes; ()deletion of the first 25 N-terminal amino acids also abolished expression of conformational epitopes (without altering VLP formation) but the native conformation of this deletion mutant could be restored by the addition of the human papillomavirus type 11 N terminus. These results demonstrate that VLP formation and conformational epitope expression can be dissociated and that the L1 N terminus has a critical role in protein folding. In addition, it appears that correct L1 protein folding is not dependent upon the nucleoplasmic environment.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-9-2137
1998-09-01
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/9/9747722.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-9-2137&mimeType=html&fmt=ahah

References

  1. Bell J. A., Sundberg J. P., Ghim S. J., Newsome J., Jenson A. B., Schlegel R. 1994; A formalin-inactivated vaccine protects against mucosal papillomavirus infection: a canine model. Pathology 62:194–198
    [Google Scholar]
  2. Belnap D. M., Olson N. H., Cladel N. M., Newcomb W. W., Brown J. C., Kreider J. W., Christensen N. D., Baker T. S. 1996; Conserved features in papillomavirus and polyomavirus capsids. Journal of Molecular Biology 259:249–263
    [Google Scholar]
  3. Breitburd F., Kirnbauer R., Hubbert N. L., Nonnenmacher B., Trin-Kinh-Desmarquet C., Orth G., Schiller J. T., Lowy D. R. 1995; Immunization with viruslike particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection. Journal of Virology 69:3959–3963
    [Google Scholar]
  4. Christensen N. D., Kreider J. W. 1990; Antibody-mediated neutralization in vivo of infectious papillomaviruses. Journal of Virology 64:3151–3156
    [Google Scholar]
  5. Christensen N. D., Hopfl R., DiAngelo S. L., Cladel N. M., Patrick S. D., Welsh P. A., Budgeon L. R., Reed C. A., Kreider J. W. 1994; Assembled baculovirus-expressed human papillomavirus type 11 L1 capsid protein virus-like particles are recognized by neutralizing monoclonal antibodies and induce high titres of neutralizing antibodies. Journal of General Virology 75:2271–2276
    [Google Scholar]
  6. Ghim S. J., Christensen N., Kreider J. W., Jenson A. B. 1991; Comparison of neutralization of BPV-1 infection of C127 cells and bovine fetal skin xenografts. International Journal of Cancer 49:285–289
    [Google Scholar]
  7. Gillock E. T., Rottinghaus S., Chang D., Cai X., Smiley S. A., An K., Consigli R. A. 1997; Polyomavirus major capsid protein VP1 is capable of packaging cellular DNA when expressed in the baculovirus system. Journal of Virology 71:2857–65
    [Google Scholar]
  8. Goldstein D. J., Schlegel R. 1990; The E5 oncoprotein of bovine papillomavirus binds to a 16 Kd cellular protein. EMBO Journal 9:137–146
    [Google Scholar]
  9. Graham F. L., vanderEb A. J. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467
    [Google Scholar]
  10. Heino P., Skyldberg B., Lehtinen M., Rantala I., Hagmar B., Kreider J. W., Kirnbauer R., Dillner J. 1995; Human papillomavirus type 16 capsids expose multiple type-restricted and type-common antigenic epitopes. Journal of General Virology 76:1141–1153
    [Google Scholar]
  11. Kalderon D., Roberts B. L., Richardson W. D., Smith A. E. 1984; A short amino acid sequence able to specify nuclear location. Cell 39:499–509
    [Google Scholar]
  12. Kirnbauer R., Booy F., Cheng N., Lowy D. R., Schiller J. T. 1992; Papillomavirus Ll major capsid protein self-assembles into virus like particles that are highly immunogenic. Proceedings of the National Academy of Sciences, USA 89:12180–12184
    [Google Scholar]
  13. Kirnbauer R., Taub J., Greenstone H., Roden R., Durst M., Gissmann L., Lowy D. R., Schiller J. T. 1993; Efficient self-assembly of human papillomavirus type 16 Ll and L1-L2 into virus-like particles. Journal of Virology 67:6929–6936
    [Google Scholar]
  14. Lancaster W. D., Olson C. 1978; Demonstration of two distinct classes of bovine papilloma virus. Virology 89:372–379
    [Google Scholar]
  15. Li M., Cripe T. P., Estes P. A., Lyon M. K., Rose R. C., Garcea R. L. 1997; Expression of the human papillomavirus type 11 L1 capsid protein in Escherichia coli : characterization of protein domains involved in DNA binding and capsid assembly. Journal of Virology 71:2988–2995
    [Google Scholar]
  16. Lim P. S., Jenson A. B., Cowsert L., Nakai Y., Lim L. Y., Jin X. W., Sundberg J. P. 1990; Distribution and specific identification of papillomavirus major capsid protein epitopes by immunocytochemistry and epitope scanning of synthetic peptides. Journal of Infectious Diseases1621263–1269
    [Google Scholar]
  17. Lorinez A. T., Reid R., Jenson A. B., Breenberg M. D., Lancaster W. D., Kurman R. J. 1992; Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. Obstetrics and Gynecology 79:328–337
    [Google Scholar]
  18. Ludmerer S. W., Benincasa D., Mark G. E. 1996; Two amino acid residues confer type specificity to a neutralizing, conformationally dependent epitope on human papillomavirus type 11. Journal of Virology 70:4791–4794
    [Google Scholar]
  19. Paintsil J., Muller M., Picken M., Gissmann L., Zhou J. 1996; Carboxyl terminus of bovine papillomavirus type 1 L1 protein is not required for capsid formation. Virology 223:238–244
    [Google Scholar]
  20. Pilacinski W. P., Glassman D. L., Krzyzer R. A., Sadowski P. L., Robbins A. K. 1984; Cloning and expression in E coli of the bovine papillomavirus L1 and L1 open reading frames. Bio/Technology 2:356–360
    [Google Scholar]
  21. Rose R. C., Bonnez W., Reichman R. C., Garcea R. C. 1993; Expression of human papillomavirus type 11 L1 protein in insect cells : in vivo and in vitro assembly of virus-like particles. Journal of Virology 67:1936–1944
    [Google Scholar]
  22. Salunke D. M., Caspar D.L.D, Garcea R. L. 1989; Polymorphism in the assembly of polyomavirus capsid protein VP1. Biophysical Journal 56:887–900
    [Google Scholar]
  23. Sparkowski J., Anders J., Schlegel R. 1994; Mutation of the bovine papillomavirus E5 oncoprotein at amino acid 17 generates both high- and low-transforming variants. Journal of Virology 69:6120–6123
    [Google Scholar]
  24. Steele J. C., Gallimore P. H. 1990; Humoral assays of human sera to disrupted and nondisrupted epitopes of human papillomavirus type 1. Virology 17:338–398
    [Google Scholar]
  25. Summers M. D., Smith G. E. 1987; A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures. TexasAgricultural Experiment Station Bulletin1555
    [Google Scholar]
  26. Sundberg J. P., O’Banion M. K., Schmidt-Didier E., Reichmann M. E. 1986; Cloning and characterization of a canine oral papillomavirus. American Journal of Veterinary Research 47:1142–1144
    [Google Scholar]
  27. Suzich J. A., Ghim S. J., Palmer-Hill F. J., White W. I., Tamura J. K., Bell J. A., Newsome J. A., Jenson A. B., Schlegel R. 1995; Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas. Proceedings of the National Academy of Sciences, USA 92:11553–11557
    [Google Scholar]
  28. Zhou J., Doorbar J., Sun X. Y., Crawford L. V., McLean C. S., Frazer I. H. 1991; Identification of the nuclear localization signal of human papillomavirus type 16 L1 protein. Virology 185:625–632
    [Google Scholar]
  29. zurHausen H. 1989; Papillomaviruses in anogenital cancer as a model to understand the role of viruses in human cancer. Cancer Research 49:4677–4681
    [Google Scholar]
  30. zurHausen H. 1991; Human papillomaviruses in the pathogenesis of human anogenital cancer. Virology 184:9–13
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-9-2137
Loading
/content/journal/jgv/10.1099/0022-1317-79-9-2137
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error