1887

Abstract

Toward understanding the temporal regulation of human cytomegalovirus (HCMV) late genes, we studied the regulation of the late gene promoter (pp28US, UL99) when outside the context of the viral genome and its response to the immediate early (IE) proteins. Expression of the luciferase reporter gene, regulated by the pp28US promoter, was synchronous with that of the endogenous viral pp28 gene, independently of whether the reporter was episomal or integrated into the glioblastoma cell line U373MG. Cotransfection of the reporter with expression vectors for each of the three major IE genes, IE72, IE86 and IE55, indicated that only IE86 transactivated the pp28US promoter. However, the magnitude of the promoter activation upon HCMV infection suggested that additional factors are also required for higher promoter activity. The promoter activation was specific to HCMV, as herpes simplex virus type 1 infection did not induce luciferase expression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-5-1147
2001-05-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/5/0821147a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-5-1147&mimeType=html&fmt=ahah

References

  1. Alford C. A., Britt W. J. 1990 Cytomegalovirus New York: Raven Press;
  2. Azad R. F., Driver V. B., Tanaka K., Crooke R. M., Anderson K. P. 1993; Antiviral activity of a phosphorothioate oligonucleotide complementary to RNA of the human cytomegalovirus major immediate-early region. Antimicrobial Agents and Chemotherapy 37:1945–1954
    [Google Scholar]
  3. Arsenakis M., Foa-Tomasi L., Speziali V., Roizman B., Campadelli-Fiume G. 1986; Expression of regulation of glycoprotein C gene of herpes simplex virus 1 resident in a clonal L-cell line. Journal of Virology 58:367–376
    [Google Scholar]
  4. Baracchini E., Glezer E., Fish K., Stenberg R. M., Nelson J. A., Ghazal P. 1992; An isoform variant of the cytomegalovirus immediate-early auto repressor functions as a transcriptional activator. Virology 188:518–529
    [Google Scholar]
  5. Chambers J., Angulo A., Amaratunga D., Guo H., Jiang Y., Wan J. S., Bittner A., Frueh K., Jackson M. R., Peterson P. A., Erlander M. G., Ghazal P. 1999; DNA microarrays of the complex human cytomegalovirus genome: profiling kinetic class with drug sensitivity of viral gene expression. Journal of Virology 73:5757–5766
    [Google Scholar]
  6. Cherrington J. M., Mocarski E. S. 1989; Human cytomegalovirus IE1 transactivates the promoter-enhancer via an 18-base-pair repeat element. Journal of Virology 63:1435–1440
    [Google Scholar]
  7. Depto A. S., Stenberg R. M. 1989; Regulated expression of the human cytomegalovirus pp65 gene: octamer sequence in the promoter is required for activation by viral gene products. Journal of Virology 63:1232–1238
    [Google Scholar]
  8. Depto A. S., Stenberg R. M. 1992; Functional analysis of the true late human cytomegalovirus pp28 upstream promoter: cis-acting elements and viral trans-acting proteins necessary for promoter activation. Journal of Virology 66:3241–3246
    [Google Scholar]
  9. Drew W. L., Mintz L., Hoo R., Finly T. N. 1979; Growth of herpes simplex and cytomegalovirus in cultured human alveolar macrophages. American Review of Respiratory Disease 119:287–291
    [Google Scholar]
  10. Fish K. N., Depto A. S., Moses A. V., Britt W., Nelson J. A. 1995; Growth kinetics of human cytomegalovirus are altered in monocyte-derived macrophages. Journal of Virology 69:3737–3743
    [Google Scholar]
  11. Fish K. N., Soderberg-Naucler C., Mills L. K., Stenglein S., Nelson J. A. 1998; Human cytomegalovirus persistently infects aortic endothelial cells. Journal of Virology 72:5661–5669
    [Google Scholar]
  12. Geballe A. P., Leach F. S., Mocarski E. S. 1986; Regulation of cytomegalovirus late gene expression: γ genes are controlled by posttranscriptional events. Journal of Virology 57:864–874
    [Google Scholar]
  13. Goins W. F., Stinski M. F. 1986; Expression of a human cytomegalovirus late gene is posttranscriptionally regulated by a 3′ end processing event occurring exclusively late after infection. Molecular and Cellular Biology 6:4202–4213
    [Google Scholar]
  14. Gonczol E., Andrew P. W., Plotkin S. A. 1984; Cytomegalovirus replicates in differentiated but not in undifferentiated human embryonal carcinoma cells. Science 224:159–161
    [Google Scholar]
  15. Hagemeier C., Walker S., Caswell R., Kouzarides T., Sinclair J. 1992; The human cytomegalovirus 80-kilodalton but not the 72-kilodalton immediate-early protein transactivates heterologous promoters in a TATA box-dependent mechanism and interacts directly with TFIID. Journal of Virology 66:4452–4456
    [Google Scholar]
  16. Hermiston T., Malone C., Witte P., Stinski M. 1987; Identification and characterization of the human cytomegalovirus immediate-early region 2 gene that stimulates gene expression from an inducible promoter. Journal of Virology 61:3214–3221
    [Google Scholar]
  17. Ho M. 1991 Cytomegalovirus: Biology and Infection New York: Plenum;
  18. Honess R. W., Roizman B. 1974; Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. Journal of Virology 14:8–19
    [Google Scholar]
  19. Honess R. W., Roizman B. 1975; Regulation of herpesvirus macromolecular synthesis: sequential transition of polypeptide synthesis requires functional viral polypeptides. Proceedings of the National Academy of Sciences, USA 72:1276–1280
    [Google Scholar]
  20. Ibanez C. E., Schrier R., Ghazal P., Wiley C., Nelson J. A. 1991; Human cytomegalovirus productively infects primary differentiated macrophages. Journal of Virology 65:6581–6588
    [Google Scholar]
  21. Jahn G., Knust E., Schmulla H., Jarre T., Nelson J. A., McDougall J. K., Fleckenstein B. 1984; Predominant immediate-early transcripts of human cytomegalovirus AD169. Journal of Virology 49:363–370
    [Google Scholar]
  22. Johnson P. A., Everett R. D. 1986; DNA replication is required for abundant expression of a plasmid-borne late US11 gene of herpes simplex virus type 1. Nucleic Acids Research 14:3609–3625
    [Google Scholar]
  23. Johnson P. A., MacLean C., Marsden H. S., Dalziel R. G., Everett R. D. 1986; The product of gene US11 of herpes simplex virus type 1 is expressed as a true late gene. Journal of General Virology 67:871–883
    [Google Scholar]
  24. Kohler C. P., Kerry J. A., Carter M., Muzithras V. P., Jones T. R., Stenberg R. M. 1994; Use of recombinant virus to assess human cytomegalovirus early and late promoters in the context of the viral genome. Journal of Virology 68:6589–6597
    [Google Scholar]
  25. Kondo K., Kaneshima H., Mocarski E. S. 1994; Human cytomegalovirus latent infection of granolocyte-macrophage progenitors. Proceedings of the National Academy of Sciences, USA 91:11879–11883
    [Google Scholar]
  26. Lang D., Stamminger T. 1993; The 86-kilodalton IE-2 protein of human cytomegalovirus is a sequence-specific DNA-binding protein that interacts directly with the negative autoregulatory response element located near the cap site of the IE-1/2 enhancer-promoter. Journal of Virology 67:323–331
    [Google Scholar]
  27. McDonough S. H., Spector D. H. 1983; Transcription in human fibroblasts permissively infected by human cytomegalovirus strain AD169. Virology 125:31–46
    [Google Scholar]
  28. Malone C. L., Vesole D. H., Stinski M. F. 1990; Transactivation of human cytomegalovirus early promoters by gene products from the immediate-early gene IE2 and augmentation by IE1: mutational analysis of the viral proteins. Journal of Virology 64:1498–1506
    [Google Scholar]
  29. Moreira J. L., Wirth M., Fitzek M., Hauser H. 1992; Evaluation of reporter genes in mammalian cell lines. Methods in Molecular and Cellular Biology 3:23–29
    [Google Scholar]
  30. Peterson M. G., Baichwal V. R. 1993; Transcription factor based therapeutics: drugs of the future?. Trends in Biotechnology 11:11–18
    [Google Scholar]
  31. Pizzorno M. C., Hayward G. S. 1990; The IE2 gene products of human cytomegalovirus specifically down-regulate expression from the major immediate-early promoter through a target sequence located near the cap site. Journal of Virology 64:6154–6165
    [Google Scholar]
  32. Schwartz R., Sommer M. H., Scully A. L., Spector D. H. 1994; Site-specific binding of the human cytomegalovirus IE2 86-kilodalton protein to an early gene promoter. Journal of Virology 68:5613–5622
    [Google Scholar]
  33. Sinzger C., Grefte A., Plachter B., Gouw A. S. H., The T. H., Jahn G. 1995; Fibroblasts, epithelial cells, endothelial cells, and smooth muscle cells are the major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. Journal of General Virology 76:741–750
    [Google Scholar]
  34. Sommer M. H., Scully A. L., Spector D. H. 1994; Transactivation by the human cytomegalovirus IE2 86 protein requires a domain that binds to both the TATA box-binding protein and the retinoblastoma protein. Journal of Virology 68:6223–6231
    [Google Scholar]
  35. Spaete R. R., Mocarski E. S. 1985; Regulation of cytomegalovirus gene expression: α and β promoters are transactivated by viral function in permissive human fibroblasts. Journal of Virology 56:135–143
    [Google Scholar]
  36. Spector D. H. 1996; Activation and regulation of human cytomegalovirus early gene. Intervirology 39:361–377
    [Google Scholar]
  37. Stasiak P., Mocarski E. S. 1992; Transactivation of the cytomegalovirus ICP36 gene promoter requires a gene product TRS1 in addition to IE1 and IE2. Journal of Virology 66:1050–1058
    [Google Scholar]
  38. Stenberg R. M. 1996; The human cytomegalovirus major immediate-early gene. Intervirology 39:343–349
    [Google Scholar]
  39. Stenberg R. M., Depto A. S., Fortney J., Nelson J. A. 1989; Regulated expression of early and late RNAs and proteins from the human cytomegalovirus immediate-early gene region. Journal of Virology 63:2699–2708
    [Google Scholar]
  40. Thompson J. F., Hayes L. S., Lloyd D. B. 1991; Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene 103:171–177
    [Google Scholar]
  41. Wu J., Jupp R., Stenberg R. M., Nelson J. A., Ghazal P. 1993; Site-specific inhibition of RNA polymerase II preinitiation complex assembly by human cytomegalovirus IE86 protein. Journal of Virology 67:7547–7555
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-5-1147
Loading
/content/journal/jgv/10.1099/0022-1317-82-5-1147
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error