1887

Abstract

Epstein–Barr virus nuclear antigen 2 (EBNA2) is essential for transformation through activation of viral and cellular genes. Within 487 residues, EBNA2 contains six lysine (K) residues (positions 335, 357, 359, 363, 366 and 480), which were mutated to arginine (R) residues, either individually or in combination, and tested for subcellular localization, mobility by SDS–PAGE and transactivation of three promoters. All mutants featuring the KR mutation within the nuclear localization signal were partially cytoplasmic with a reduced level of transactivation of the latent membrane protein 1 (LMP1) promoter (−327 to +40). The KR mutation also showed a decrease in transactivation of a promoter consisting only of 12 recombination signal-binding protein-Jκ-binding sites, while all mutants with the KR exchange showed a markedly elevated transactivation with the −327 to +40 construct and all mutants showed slightly reduced transactivation with a −634 to +40 LMP1 promoter. None of the mutants exhibited altered migration in SDS–PAGE, excluding secondary modification, i.e. through SUMO-like proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-5-1037
2002-05-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/5/0831037a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-5-1037&mimeType=html&fmt=ahah

References

  1. Bornkamm G. W., Hammerschmidt W. 2001; Molecular virology of Epstein–Barr virus. Philosophical Transactions of the Royal Society of London B Biological Sciences 356:437–459
    [Google Scholar]
  2. Bradbury E. M. 1992; Reversible histone modifications and the chromosome cell cycle. Bioessays 14:9–16
    [Google Scholar]
  3. Cohen J. I., Wang F., Kieff E. 1991; Epstein–Barr virus nuclear protein 2 mutations define essential domains for transformation and transactivation. Journal of Virology 65:2545–2554
    [Google Scholar]
  4. Fuentes-Panana E. M., Peng R., Brewer G., Tan J., Ling P. D. 2000; Regulation of the Epstein–Barr virus C promoter by AUF1 and the cyclic AMP/protein kinase A signaling pathway. Journal of Virology 74:8166–8175
    [Google Scholar]
  5. Grässer F. A., Göttel S., Haiss P., Boldyreff B., Issinger O. G., Mueller-Lantzsch N. 1992; Phosphorylation of the Epstein–Barr virus nuclear antigen 2. Biochemical and Biophysical Research Communications 186:1694–1701
    [Google Scholar]
  6. Grundhoff A. T., Kremmer E., Tureci O., Glieden A., Gindorf C., Atz J., Mueller-Lantzsch N., Schubach W. H., Grässer F. A. 1999; Characterization of DP103, a novel DEAD box protein that binds to the Epstein–Barr virus nuclear proteins EBNA2 and EBNA3C. Journal of Biological Chemistry 274:19136–19144
    [Google Scholar]
  7. Hammerschmidt W., Sugden B. 1989; Genetic analysis of immortalizing functions of Epstein–Barr virus in human B lymphocytes. Nature 340:393–397
    [Google Scholar]
  8. Hochstrasser M. 2000; Biochemistry. All in the ubiquitin family. Science 289:563–564
    [Google Scholar]
  9. Kempkes B., Spitkovsky D., Jansen-Dürr P., Ellwart J. W., Kremmer E., Delecluse H. J., Rottenberger C., Bornkamm G. W., Hammerschmidt W. 1995; B-cell proliferation and induction of early G1-regulating proteins by Epstein–Barr virus mutants conditional for EBNA2. EMBO Journal 14:88–96
    [Google Scholar]
  10. Kremmer E., Kranz B., Hille A., Klein K., Eulitz M., Hoffmann-Fezer G., Feiden W., Herrmann K., Delecluse H.-J., Delsol G., Bornkamm G. W., Mueller-Lantzsch N., Grässer F. A. 1995; Rat monoclonal antibodies differentiating between the Epstein–Barr virus nuclear antigens 2A (EBNA2A) and 2B (EBNA2B). Virology 208:336–342
    [Google Scholar]
  11. Laux G., Adam B., Strobl L. J., Moreau-Gachelin F. 1994a; The Spi-1/PU.1 and Spi-B ets family transcription factors and the recombination signal binding protein RBP-Jκ interact with an Epstein–Barr virus nuclear antigen 2 responsive cis -element. EMBO Journal 13:5624–5632
    [Google Scholar]
  12. Laux G., Dugrillon F., Eckert C., Adam B., Zimber-Strobl U., Bornkamm G. W. 1994b; Identification and characterization of an Epstein–Barr virus nuclear antigen 2-responsive cis element in the bidirectional promoter region of latent membrane protein and terminal protein 2 genes. Journal of Virology 68:6947–6958
    [Google Scholar]
  13. Ling P. D., Hayward S. D. 1995; Contribution of conserved amino acids in mediating the interaction between EBNA2 and CBF1/RBPJκ. Journal of Virology 69:1944–1950
    [Google Scholar]
  14. Ling P. D., Ryon J. J., Hayward S. D. 1993; EBNA-2 of herpesvirus papio diverges significantly from the type A and type B EBNA-2 proteins of Epstein–Barr virus but retains an efficient transactivation domain with a conserved hydrophobic motif. Journal of Virology 67:2990–3003
    [Google Scholar]
  15. Ling P. D., Hsieh J. J., Ruf I. K., Rawlins D. R., Hayward S. D. 1994; EBNA-2 upregulation of Epstein–Barr virus latency promoters and the cellular CD23 promoter utilizes a common targeting intermediate, CBF1. Journal of Virology 68:5375–5383
    [Google Scholar]
  16. Mahajan R., Delphin C., Guan T., Gerace L., Melchior F. 1997; A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97–107
    [Google Scholar]
  17. Melchior F. 2000; SUMO – nonclassical ubiquitin. Annual Review of Cell and Developmental Biology 16:591–626
    [Google Scholar]
  18. Rickinson A. B., Kieff E. 1996; Epstein–Barr Virus. In Fields Virology pp 2397–2446 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  19. Rickinson A. B., Young L. S., Rowe M. 1987; Influence of the Epstein–Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. Journal of Virology 61:1310–1317
    [Google Scholar]
  20. Saitoh H., Hinchey J. 2000; Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. Journal of Biological Chemistry 275:6252–6258
    [Google Scholar]
  21. Sjøblom A., Yang W., Palmqvist L., Jansson A., Rymo L. 1998; An ATF/CRE element mediates both EBNA2-dependent and EBNA2-independent activation of the Epstein–Barr virus LMP1 gene promoter. Journal of Virology 72:1365–1376
    [Google Scholar]
  22. Strobl L. J., Hofelmayr H., Stein C., Marschall G., Brielmeier M., Laux G., Bornkamm G. W., Zimber-Strobl U. 1997; Both Epstein–Barr viral nuclear antigen 2 (EBNA2) and activated Notch1 transactivate genes by interacting with the cellular protein RBP-Jκ. Immunobiology 198:299–306
    [Google Scholar]
  23. Tong X., Yalamanchili R., Harada S., Kieff E. 1994; The EBNA-2 arginine–glycine domain is critical but not essential for B-lymphocyte growth transformation; the rest of region 3 lacks essential interactive domains. Journal of Virology 68:6188–6197
    [Google Scholar]
  24. Tong X., Wang F., Thut C. J., Kieff E. 1995; The Epstein–Barr virus nuclear protein 2 acidic domain can interact with TFIIB, TAF40, and RPA70 but not with TATA-binding protein. Journal of Virology 69:585–588
    [Google Scholar]
  25. Voss M. D., Hille A., Barth S., Spurk A., Hennrich F., Holzer D., Mueller-Lantzsch N., Kremmer E., Grässer F. A. 2001; Functional cooperation of the Epstein–Barr virus nuclear antigen 2 and the survival motor neuron protein in transactivation of the viral LMP1 promoter. Journal of Virology 75:11781–11790
    [Google Scholar]
  26. Zhao B., Sample C. E. 2000; Epstein–Barr virus nuclear antigen 3C activates the latent membrane protein 1 promoter in the presence of Epstein–Barr virus nuclear antigen 2 through sequences encompassing an spi-1/spi-B binding site. Journal of Virology 74:5151–5160
    [Google Scholar]
  27. Zimber-Strobl U., Strobl L. J., Meitinger C., Hinrichs R., Sakai T., Furukawa T., Honjo T., Bornkamm G. W. 1994; Epstein–Barr virus nuclear antigen 2 exerts its transactivating function through interaction with recombination signal binding protein RBP-Jκ, the homologue of Drosophila suppressor of hairless. EMBO Journal 13:4973–4982
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-5-1037
Loading
/content/journal/jgv/10.1099/0022-1317-83-5-1037
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error