1887

Abstract

Little is known about the response of non-model invertebrates, such as oysters, to virus infection. The vertebrate innate immune system detects virus-derived nucleic acids to trigger the type I IFN pathway, leading to the transcription of hundreds of IFN-stimulated genes (ISGs) that exert antiviral functions. Invertebrates were thought to lack the IFN pathway based on the absence of IFN or ISGs encoded in model invertebrate genomes. However, the oyster genome encodes many ISGs, including the well-described antiviral protein viperin. In this study, we characterized oyster viperin and showed that it localizes to caveolin-1 and inhibits dengue virus replication in a heterologous model. In a second set of experiments, we have provided evidence that the haemolymph from poly(I : C)-injected oysters contains a heat-stable, protease-susceptible factor that induces haemocyte transcription of viperin mRNA in conjunction with upregulation of IFN regulatory factor. Collectively, these results support the concept that oysters have antiviral systems that are homologous to the vertebrate IFN pathway.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000300
2015-12-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/12/3587.html?itemId=/content/journal/jgv/10.1099/jgv.0.000300&mimeType=html&fmt=ahah

References

  1. Aresté C., Blackbourn D. J. 2009; Modulation of the immune system by Kaposi's sarcoma-associated herpesvirus. Trends Microbiol 17:119–129 [View Article][PubMed]
    [Google Scholar]
  2. Biron C. A., Sen G. C. 2001; Interferons and other cytokines. In Fields Virology, 4th edn. pp. 321–351 Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  3. Chin K. -C., Cresswell P. 2001; Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus. Proc Natl Acad Sci U S A 98:15125–15130 [View Article][PubMed]
    [Google Scholar]
  4. Duan H., Jin S., Zhang Y., Li F., Xiang J. 2014; Granulocytes of the red claw crayfish Cherax quadricarinatus can endocytose beads, E. coli and WSSV, but in different ways. Dev Comp Immunol 46:186–193 [View Article][PubMed]
    [Google Scholar]
  5. Eyre N. S., Cleland L. G., Tandon N. N., Mayrhofer G. 2007; Importance of the carboxyl terminus of FAT/CD36 for plasma membrane localization and function in long-chain fatty acid uptake. J Lipid Res 48:528–542 [View Article][PubMed]
    [Google Scholar]
  6. Eyre N. S., Fiches G. N., Aloia A. L., Helbig K. J., McCartney E. M., McErlean C. S. P., Li K., Aggarwal A., Turville S. G., Beard M. R. 2014; Dynamic imaging of the hepatitis C virus NS5A protein during a productive infection. J Virol 88:3636–3652 [View Article][PubMed]
    [Google Scholar]
  7. Gabor K. A., Stevens C. R., Pietraszewski M. J., Gould T. J., Shim J., Yoder J. A., Lam S. H., Gong Z., Hess S. T., Kim C. H. 2013; Super resolution microscopy reveals that caveolin-1 is required for spatial organization of CRFB1 and subsequent antiviral signaling in zebrafish. PLoS One 8:e68759 [View Article][PubMed]
    [Google Scholar]
  8. Goossens K. E., Karpala A. J., Rohringer A., Ward A., Bean A. G. D. 2015; Characterisation of chicken viperin. Mol Immunol 63:373–380 [View Article][PubMed]
    [Google Scholar]
  9. Green T. J., Barnes A. C. 2009; Inhibitor of REL/NF-KB is regulated in Sydney rock oysters in response to specific double-stranded RNA and Vibrio alginolyticus, but the major immune anti-oxidants EcSOD and Prx6 are non-inducible. Fish Shellfish Immunol 27:260–265 [View Article][PubMed]
    [Google Scholar]
  10. Green T. J., Montagnani C. 2013; Poly I:C induces a protective antiviral immune response in the Pacific oyster (Crassostrea gigas) against subsequent challenge with Ostreid herpesvirus (OsHV-1 μvar). Fish Shellfish Immunol 35:382–388 [View Article][PubMed]
    [Google Scholar]
  11. Green T. J., Benkendorff K., Robinson N., Raftos D., Speck P. 2014a; Anti-viral gene induction is absent upon secondary challenge with double-stranded RNA in the Pacific oyster, Crassostrea gigas . Fish Shellfish Immunol 39:492–497 [View Article][PubMed]
    [Google Scholar]
  12. Green T. J., Montagnani C., Benkendorff K., Robinson N., Speck P. 2014b; Ontogeny and water temperature influences the antiviral response of the Pacific oyster, Crassostrea gigas . Fish Shellfish Immunol 36:151–157 [View Article][PubMed]
    [Google Scholar]
  13. Green T. J., Raftos D., Speck P., Montagnani C. 2015a; Antiviral immunity in marine molluscs. J Gen Virol 96:2471–2482 [View Article][PubMed]
    [Google Scholar]
  14. Green T. J., Rolland J. -L., Vergnes A., Raftos D., Montagnani C. 2015b; OsHV-1 countermeasures to the Pacific oyster's anti-viral response. Fish Shellfish Immunol 47:435–443 [View Article]
    [Google Scholar]
  15. He Y., Jouaux A., Ford S. E., Lelong C., Sourdaine P., Mathieu M., Guo X. 2015; Transcriptome analysis reveals strong and complex antiviral response in a mollusc. Fish Shellfish Immunol 46:131–144 [View Article][PubMed]
    [Google Scholar]
  16. Helbig K. J., Beard M. R. 2014; The role of viperin in the innate antiviral response. J Mol Biol 426:1210–1219 [View Article][PubMed]
    [Google Scholar]
  17. Helbig K. J., Lau D. T., Semendric L., Harley H. A., Beard M. R. 2005; Analysis of ISG expression in chronic hepatitis C identifies viperin as a potential antiviral effector. Hepatology 42:702–710 [View Article][PubMed]
    [Google Scholar]
  18. Helbig K. J., Eyre N. S., Yip E., Narayana S., Li K., Fiches G., McCartney E. M., Jangra R. K., Lemon S. M., Beard M. R. 2011; The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A. Hepatology 54:1506–1517 [View Article][PubMed]
    [Google Scholar]
  19. Helbig K. J., Carr J. M., Calvert J. K., Wati S., Clarke J. N., Eyre N. S., Narayana S. K., Fiches G. N., McCartney E. M., Beard M. R. 2013; Viperin is induced following dengue virus type-2 (DENV-2) infection and has anti-viral actions requiring the C-terminal end of viperin. PLoS Negl Trop Dis 7:e2178 [View Article][PubMed]
    [Google Scholar]
  20. Hinson E. R., Cresswell P. 2009a; The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic α-helix. Proc Natl Acad Sci U S A 106:20452–20457 [View Article][PubMed]
    [Google Scholar]
  21. Hinson E. R., Cresswell P. 2009b; The N-terminal amphipathic α-helix of viperin mediates localization to the cytosolic face of the endoplasmic reticulum and inhibits protein secretion. J Biol Chem 284:4705–4712 [View Article][PubMed]
    [Google Scholar]
  22. Huang Z. -J., Kang S. -T., Leu J. -H., Chen L. -L. 2013; Endocytic pathway is indicated for white spot syndrome virus (WSSV) entry in shrimp. Fish Shellfish Immunol 35:707–715 [View Article][PubMed]
    [Google Scholar]
  23. Langevin C., Aleksejeva E., Passoni G., Palha N., Levraud J. -P., Boudinot P. 2013; The antiviral innate immune response in fish: evolution and conservation of the IFN system. J Mol Biol 425:4904–4920 [View Article][PubMed]
    [Google Scholar]
  24. Lei M., Liu H., Liu S., Zhang Y., Zhang S. 2015; Identification and functional characterization of viperin of amphioxus Branchiostoma japonicum: implications for ancient origin of viperin-mediated antiviral response. Dev Comp Immunol 53:293–302 [View Article][PubMed]
    [Google Scholar]
  25. Loker E. S., Adema C. M., Zhang S. -M., Kepler T. B. 2004; Invertebrate immune systems – not homogeneous, not simple, not well understood. Immunol Rev 198:10–24 [View Article][PubMed]
    [Google Scholar]
  26. Mattijssen S., Pruijn G. J. M. 2012; Viperin, a key player in the antiviral response. Microbes Infect 14:419–426 [View Article][PubMed]
    [Google Scholar]
  27. Milic N. L., Davis S., Carr J. M., Isberg S., Beard M. R., Helbig K. J. 2015; Sequence analysis and characterisation of virally induced viperin in the saltwater crocodile (Crocodylus porosus). Dev Comp Immunol 51:108–115 [View Article][PubMed]
    [Google Scholar]
  28. Morga B., Arzul I., Faury N., Segarra A., Chollet B., Renault T. 2011; Molecular responses of Ostrea edulis haemocytes to an in vitro infection with Bonamia ostreae . Dev Comp Immunol 35:323–333 [View Article][PubMed]
    [Google Scholar]
  29. Nasr N., Maddocks S., Turville S. G., Harman A. N., Woolger N., Helbig K. J., Wilkinson J., Bye C. R., Wright T. K., other authors. 2012; HIV-1 infection of human macrophages directly induces viperin which inhibits viral production. Blood 120:778–788 [View Article][PubMed]
    [Google Scholar]
  30. Oritani K., Hirota S., Nakagawa T., Takahashi I., Kawamoto S., Yamada M., Ishida N., Kadoya T., Tomiyama Y., other authors. 2003; T lymphocytes constitutively produce an interferonlike cytokine limitin characterized as a heat- and acid-stable and heparin-binding glycoprotein. Blood 101:178–185 [View Article][PubMed]
    [Google Scholar]
  31. Parton R. G., Simons K. 2007; The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194 [View Article][PubMed]
    [Google Scholar]
  32. Paul-Pont I., Evans O., Dhand N. K., Rubio A., Coad P., Whittington R. 2014; Descriptive epidemiology of mass mortality due to Ostreid herpesvirus-1 (OsHV-1) in commercially farmed Pacific oysters (Crassostrea gigas) in the Hawkesbury River estuary. Aust Aquacult 422–423:146–159 [View Article]
    [Google Scholar]
  33. Peeler E. J., Reese R. A., Cheslett D. L., Geoghegan F., Power A., Thrush M. A. 2012; Investigation of mortality in Pacific oysters associated with Ostreid herpesvirus-1 μVar in the Republic of Ireland in 2009. Prev Vet Med 105:136–143 [View Article][PubMed]
    [Google Scholar]
  34. Randall R. E., Goodbourn S. 2008; Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89:1–47[PubMed] [CrossRef]
    [Google Scholar]
  35. Renault T., Faury N., Barbosa-Solomieu V., Moreau K. 2011; Suppression substractive hybridisation (SSH) and real time PCR reveal differential gene expression in the Pacific cupped oyster, Crassostrea gigas, challenged with Ostreid herpesvirus 1. Dev Comp Immunol 35:725–735 [View Article][PubMed]
    [Google Scholar]
  36. Renault T., Tchaleu G., Faury N., Moreau P., Segarra A., Barbosa-Solomieu V., Lapegue S. 2014; Genotyping of a microsatellite locus to differentiate clinical Ostreid herpesvirus 1 specimens. Vet Res 45:3 [View Article]
    [Google Scholar]
  37. Robalino J., Browdy C. L., Prior S., Metz A., Parnell P., Gross P., Warr G. 2004; Induction of antiviral immunity by double-stranded RNA in a marine invertebrate. J Virol 78:10442–10448 [View Article][PubMed]
    [Google Scholar]
  38. Robalino J., Bartlett T., Shepard E., Prior S., Jaramillo G., Scura E., Chapman R. W., Gross P. S., Browdy C. L., Warr G. W. 2005; Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp: convergence of RNA interference and innate immunity in the invertebrate antiviral response?. J Virol 79:13561–13571 [View Article][PubMed]
    [Google Scholar]
  39. Robertsen B. 2006; The interferon system of teleost fish. Fish Shellfish Immunol 20:172–191 [View Article][PubMed]
    [Google Scholar]
  40. Rosani U., Varotto L., Domeneghetti S., Arcangeli G., Pallavicini A., Venier P. 2014; Dual analysis of host and pathogen transcriptomes in ostreid herpesvirus 1-positive Crassostrea gigas . [View Article][PubMed]
    [Google Scholar]
  41. Schoggins J. W., Rice C. M. 2011; Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1:519–525 [View Article][PubMed]
    [Google Scholar]
  42. Segarra A., Pépin J. F., Arzul I., Morga B., Faury N., Renault T. 2010; Detection and description of a particular Ostreid herpesvirus 1 genotype associated with massive mortality outbreaks of Pacific oysters, Crassostrea gigas, in France in 2008. Virus Res 153:92–99 [View Article][PubMed]
    [Google Scholar]
  43. Segarra A., Faury N., Pépin J. -F., Renault T. 2014a; Transcriptomic study of 39 ostreid herpesvirus 1 genes during an experimental infection. J Invertebr Pathol 119:5–11 [View Article][PubMed]
    [Google Scholar]
  44. Segarra A., Mauduit F., Faury N., Trancart S., Dégremont L., Tourbiez D., Haffner P., Barbosa-Solomieu V., Pépin J. -F., other authors. 2014b; Dual transcriptomics of virus-host interactions: comparing two Pacific oyster families presenting contrasted susceptibility to ostreid herpesvirus 1. BMC Genomics 15:580–592 [View Article][PubMed]
    [Google Scholar]
  45. Seo J. -Y., Yaneva R., Hinson E. R., Cresswell P. 2011; Human cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity. Science 332:1093–1097 [View Article][PubMed]
    [Google Scholar]
  46. Shen G., Wang K., Wang S., Cai M., Li M. -L., Zheng C. 2014; Herpes simplex virus 1 counteracts viperin via its virion host shutoff protein UL41. J Virol 88:12163–12166 [View Article][PubMed]
    [Google Scholar]
  47. Smith A. E., Helenius A. 2004; How viruses enter animal cells. Science 304:237–242 [View Article][PubMed]
    [Google Scholar]
  48. Takaoka A., Mitani Y., Suemori H., Sato M., Yokochi T., Noguchi S., Tanaka N., Taniguchi T. 2000; Cross talk between interferon-γ and -α/β signaling components in caveolar membrane domains. Science 288:2357–2360 [View Article][PubMed]
    [Google Scholar]
  49. Teng T. S., Foo S. S., Simamarta D., Lum F. M., Teo T. H., Lulla A., Yeo N. K., Koh E. G., Chow A., other authors. 2012; Viperin restricts chikungunya virus replication and pathology. J Clin Invest 122:4447–4460 [View Article][PubMed]
    [Google Scholar]
  50. Wang X., Hinson E. R., Cresswell P. 2007; The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2:96–105 [View Article][PubMed]
    [Google Scholar]
  51. Wang B., Zhang Y. -B., Liu T. -K., Gui J. -F. 2014a; Sequence analysis and subcellular localization of crucian carp Carassius auratus viperin. Fish Shellfish Immunol 39:168–177 [View Article][PubMed]
    [Google Scholar]
  52. Wang B., Zhang Y. -B., Liu T. -K., Shi J., Sun F., Gui J. -F. 2014b; Fish viperin exerts a conserved antiviral function through RLR-triggered IFN signaling pathway. Dev Comp Immunol 47:140–149 [View Article][PubMed]
    [Google Scholar]
  53. Wang P. -H., Weng S. -P., He J. -G. 2015; Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective. Dev Comp Immunol 48:291–296 [View Article][PubMed]
    [Google Scholar]
  54. White D. W., Suzanne Beard R., Barton E. S. 2012; Immune modulation during latent herpesvirus infection. Immunol Rev 245:189–208 [View Article][PubMed]
    [Google Scholar]
  55. Yoshino T. P., Bickham U., Bayne C. J. 2013; Molluscan cells in culture: primary cell cultures and cell lines. Can J Zool 91:391–404 [View Article][PubMed]
    [Google Scholar]
  56. Zhang B. -C., Zhang J., Xiao Z. -Z., Sun L. 2014; Rock bream (Oplegnathus fasciatus) viperin is a virus-responsive protein that modulates innate immunity and promotes resistance against megalocytivirus infection. Dev Comp Immunol 45:35–42 [View Article][PubMed]
    [Google Scholar]
  57. Zhong Z., Ji Y., Fu Y., Liu B., Zhu Q. 2015; Molecular characterization and expression analysis of the duck viperin gene. Gene 570:100–107 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000300
Loading
/content/journal/jgv/10.1099/jgv.0.000300
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error