1887

Abstract

During cell infection, the gene of baculoviruses frequently mutates, producing the few polyhedra (FP) per cell phenotype with reduced polyhedrin () expression levels compared with wild-type baculoviruses. Here we report that the gene of the model baculovirus, multiple nucleopolyhedrovirus (AcMNPV), contains two hypermutable seven-adenine (A7) mononucleotide repeats (MNRs) that were mutated to A8 MNRs and a TTAA site that had host DNA insertions, producing mutants during 21 cell infection. The FP phenotype in 9 and Hi5 cells was more pronounced than in 21 cells. AcMNPV mutants produced similar levels of polyhedra or enhanced GFP, which were both under the control of the AcMNPV promoter for expression, in 21 cells but lower levels in 9 and Hi5 cells compared with AcMNPV with an intact gene. This correlated with the mRNA levels detected in each cell line. The majority of 21 cells infected with mutants showed high promoter-mediated GFP expression levels. Two cell lines subcloned from 21 cells that were infected with mutants showed different GFP expression levels. Furthermore, a small proportion of Hi5 cells infected with mutants showed higher production of polyhedra and GFP expression than the rest, and the latter was not correlated with increased m.o.i. Therefore, these data suggest that AcMNPV promoter-mediated gene expression activities differ in the three cell lines and are influenced by different cells within the cell line.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.045583-0
2013-01-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/1/166.html?itemId=/content/journal/jgv/10.1099/vir.0.045583-0&mimeType=html&fmt=ahah

References

  1. Ayres M. D., Howard S. C., Kuzio J., Lopez-Ferber M., Possee R. D. 1994; The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202:586–605 [View Article][PubMed]
    [Google Scholar]
  2. Beames B., Summers M. D. 1988; Comparisons of host cell DNA insertions and altered transcription at the site of insertions in few polyhedra baculovirus mutants. Virology 162:206–220 [View Article][PubMed]
    [Google Scholar]
  3. Beames B., Summers M. D. 1989; Location and nucleotide sequence of the 25K protein missing from baculovirus few polyhedra (FP) mutants. Virology 168:344–353 [View Article][PubMed]
    [Google Scholar]
  4. Bischoff D. S., Slavicek J. M. 1997; Phenotypic and genetic analysis of Lymantria dispar nucleopolyhedrovirus few polyhedra mutants: mutations in the 25K FP gene may be caused by DNA replication errors. J Virol 71:1097–1106[PubMed]
    [Google Scholar]
  5. Braunagel S. C., Burks J. K., Rosas-Acosta G., Harrison R. L., Ma H., Summers M. D. 1999; Mutations within the Autographa californica nucleopolyhedrovirus FP25K gene decrease the accumulation of ODV-E66 and alter its intranuclear transport. J Virol 73:8559–8570[PubMed]
    [Google Scholar]
  6. Braunagel S. C., Williamson S. T., Saksena S., Zhong Z., Russell W. K., Russell D. H., Summers M. D. 2004; Trafficking of ODV-E66 is mediated via a sorting motif and other viral proteins: facilitated trafficking to the inner nuclear membrane. Proc Natl Acad Sci U S A 101:8372–8377 [View Article][PubMed]
    [Google Scholar]
  7. Braunagel S. C., Cox V., Summers M. D. 2009; Baculovirus data suggest a common but multifaceted pathway for sorting proteins to the inner nuclear membrane. J Virol 83:1280–1288 [View Article][PubMed]
    [Google Scholar]
  8. Caron A. W., Archambault J., Massie B. 1990; High-level recombinant protein production in bioreactors using the baculovirus–insect cell expression system. Biotechnol Bioeng 36:1133–1140 [View Article][PubMed]
    [Google Scholar]
  9. Carstens E. B. 1987; Identification and nucleotide sequence of the regions of Autographa californica nuclear polyhedrosis virus genome carrying insertion elements derived from Spodoptera frugiperda . Virology 161:8–17 [View Article][PubMed]
    [Google Scholar]
  10. Cheng X., Krell P., Arif B. 2001; P34.8 (GP37) is not essential for baculovirus replication. J Gen Virol 82:299–305[PubMed]
    [Google Scholar]
  11. Cheng X.-H., Kumar C. M. S., Arif B. M., Krell P. J., Zhang C.-X., Cheng X.-W. 2013; Cell-dependent production of polyhedra and virion occlusion of Autographa californica multiple nucleopolyhedrovirus fp25k mutants in vitro and in vivo . J Gen Virol 94:177–186 [View Article][PubMed]
    [Google Scholar]
  12. de Rezende S. H., Castro M. E., Souza M. L. 2009; Accumulation of few-polyhedra mutants upon serial passage of Anticarsia gemmatalis multiple nucleopolyhedrovirus in cell culture. J Invertebr Pathol 100:153–159 [View Article][PubMed]
    [Google Scholar]
  13. Donaldson M. S., Shuler M. L. 1998; Effects of long-term passaging of BTI-Tn5B1-4 insect cells on growth and recombinant protein production. Biotechnol Prog 14:543–547 [View Article][PubMed]
    [Google Scholar]
  14. Fraser M. J., Smith G. E., Summers M. D. 1983; Acquisition of host cell DNA sequences by baculoviruses: relationship between host DNA insertions and FP mutants of Autographa californica and Galleria mellonella nuclear polyhedrosis viruses. J Virol 47:287–300[PubMed]
    [Google Scholar]
  15. Fraser M. J., Cary L., Boonvisudhi K., Wang H.-G. 1995; Assay for movement of lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virology 211:397–407 [View Article][PubMed]
    [Google Scholar]
  16. Giri L., Li H., Sandgren D., Feiss M. G., Roller R., Bonning B. C., Murhammer D. W. 2010; Removal of transposon target sites from the Autographa californica multiple nucleopolyhedrovirus fp25k gene delays, but does not prevent, accumulation of the few polyhedra phenotype. J Gen Virol 91:3053–3064 [View Article][PubMed]
    [Google Scholar]
  17. Granados R. R., Li G. X., Derksen A. C. G., McKenna K. A. 1994; A new insect cell line from Trichoplusia ni (BTI-Tn-5B1-4) susceptible to Trichoplusia ni single enveloped nuclear polyhedrosis virus. J Invertebr Pathol 64:260–266 [View Article]
    [Google Scholar]
  18. Granados R. R., Li G., Blissard G. W. 2007; Insect cell culture and biotechnology. Virol Sin 22:83–93 [View Article]
    [Google Scholar]
  19. Harrison R. L., Summers M. D. 1995a; Biosynthesis and localization of the Autographa californica nuclear polyhedrosis virus 25K gene product. Virology 208:279–288 [View Article][PubMed]
    [Google Scholar]
  20. Harrison R. L., Summers M. D. 1995b; Mutations in the Autographa californica multinucleocapsid nuclear polyhedrosis virus 25 kDa protein gene result in reduced virion occlusion, altered intranuclear envelopment and enhanced virus production. J Gen Virol 76:1451–1459 [View Article][PubMed]
    [Google Scholar]
  21. Harrison R. L., Jarvis D. L., Summers M. D. 1996; The role of the AcMNPV 25K gene, “FP25,” in baculovirus polh and p10 expression. Virology 226:34–46 [View Article][PubMed]
    [Google Scholar]
  22. Herniou E. A., Arif B. M., Becnel J. J., Blissard G. W., Bonning B. C., Harrison R. L., Jehle J. A., Theilmann D. A., Vlak J. M. 2012; Family Baculoviridae . In Virus Taxonomy – Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses pp. 163–173 Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. San Diego, CA: Elsevier;
    [Google Scholar]
  23. Hink W. F., Vail P. V. 1973; A plaque assay for titration of alfalfa looper nuclear polyhedrosis virus in a cabbage looper (TN-368) cell line. J Invertebr Pathol 22:168–174 [View Article]
    [Google Scholar]
  24. Hong T., Summers M. D., Braunagel S. C. 1997; N-terminal sequences from Autographa californica nuclear polyhedrosis virus envelope proteins ODV-E66 and ODV-E25 are sufficient to direct reporter proteins to the nuclear envelope, intranuclear microvesicles and the envelope of occlusion derived virus. Proc Natl Acad Sci U S A 94:4050–4055 [View Article][PubMed]
    [Google Scholar]
  25. Jarvis D. L., Bohlmeyer D. A., Garcia A. Jr 1992; Enhancement of polyhedrin nuclear localization during baculovirus infection. J Virol 66:6903–6911[PubMed]
    [Google Scholar]
  26. Katsuma S., Noguchi Y., Zhou C. L., Kobayashi M., Maeda S. 1999; Characterization of the 25K FP gene of the baculovirus Bombyx mori nucleopolyhedrovirus: implications for post-mortem host degradation. J Gen Virol 80:783–791[PubMed]
    [Google Scholar]
  27. Kumar S., Miller L. K. 1987; Effects of serial passage of Autographa californica nuclear polyhedrosis virus in cell culture. Virus Res 7:335–349 [View Article][PubMed]
    [Google Scholar]
  28. Li G.-X., Hashimoto Y., Granados R. R. 2003; Growth characteristics and expression of recombinant proteins by new cell clones derived from Trichoplusia ni (BTI Tn5B1-4) High Five™ cells. BioProcess J 2:35–38
    [Google Scholar]
  29. Lo H. R., Chao Y. C. 2004; Rapid titer determination of baculovirus by quantitative real-time polymerase chain reaction. Biotechnol Prog 20:354–360 [View Article][PubMed]
    [Google Scholar]
  30. Lua L. H., Pedrini M. R., Reid S., Robertson A., Tribe D. E. 2002; Phenotypic and genotypic analysis of Helicoverpa armigera nucleopolyhedrovirus serially passaged in cell culture. J Gen Virol 83:945–955[PubMed]
    [Google Scholar]
  31. McLachlin J. R., Miller L. K. 1994; Identification and characterization of vlf-1, a baculovirus gene involved in very late gene expression. J Virol 68:7746–7756[PubMed]
    [Google Scholar]
  32. Medin J. A., Hunt L., Gathy K., Evans R. K., Coleman M. S. 1990; Efficient, low-cost protein factories: expression of human adenosine deaminase in baculovirus-infected insect larvae. Proc Natl Acad Sci U S A 87:2760–2764 [View Article][PubMed]
    [Google Scholar]
  33. Miller L. H., Lu A. 1997; The molecular basis of baculovirus host range. In The Baculoviruses pp. 217–235 Edited by Miller L. H. New York: Plenum Press; [CrossRef]
    [Google Scholar]
  34. O’Reilly D. R., Miller L. K., Luckow V. A. 1992 Baculovirus Expression Vectors: a Laboratory Manual New York: W. H. Freeman & Co;
    [Google Scholar]
  35. Ogay I. D., Lihoradova O. A., Azimova ShS., Abdukarimov A. A., Slack J. M., Lynn D. E. 2006; Transfection of insect cell lines using polyethylenimine. Cytotechnology 51:89–98 [View Article][PubMed]
    [Google Scholar]
  36. Pfaffl M. W. 2001; A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45 [View Article][PubMed]
    [Google Scholar]
  37. Price P. M., Reichelderfer C. F., Johansson B. E., Kilbourne E. D., Acs G. 1989; Complementation of recombinant baculoviruses by coinfection with wild-type virus facilitates production in insect larvae of antigenic proteins of hepatitis B virus and influenza virus. Proc Natl Acad Sci U S A 86:1453–1456 [View Article][PubMed]
    [Google Scholar]
  38. Rapp J. C., Wilson J. A., Miller L. K. 1998; Nineteen baculovirus open reading frames, including LEF-12, support late gene expression. J Virol 72:10197–10206[PubMed]
    [Google Scholar]
  39. Rosas-Acosta G., Braunagel S. C., Summers M. D. 2001; Effects of deletion and overexpression of the Autographa californica nuclear polyhedrosis virus FP25K gene on synthesis of two occlusion-derived virus envelope proteins and their transport into virus-induced intranuclear membranes. J Virol 75:10829–10842 [View Article][PubMed]
    [Google Scholar]
  40. Rose R. C., Bonnez W., Reichman R. C., Garcea R. L. 1993; Expression of human papillomavirus type 11 L1 protein in insect cells: in vivo and in vitro assembly of viruslike particles. J Virol 67:1936–1944[PubMed]
    [Google Scholar]
  41. Vaughn J. L., Goodwin R. H., Tompkins G. J., McCawley P. 1977; The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro 13:213–217 [View Article][PubMed]
    [Google Scholar]
  42. Xue J.-L., Cheng X.-W. 2010; Using host 28S ribosomal RNA as a housekeeping gene for quantitative real-time reverse transcription-PCR (qRT-PCR) in virus-infected animal cells. Curr Protoc Microbiol 1:1D.2 [View Article]
    [Google Scholar]
  43. Xue J. L., Salem T. Z., Turney C. M., Cheng X. W. 2010; Strategy of the use of 28S rRNA as a housekeeping gene in real-time quantitative PCR analysis of gene transcription in insect cells infected by viruses. J Virol Methods 163:210–215 [View Article][PubMed]
    [Google Scholar]
  44. Zheng Y., Zheng S., Cheng X., Ladd T., Lingohr E. J., Krell P. J., Arif B. M., Retnakaran A., Feng Q. 2002; A molt-associated chitinase cDNA from the spruce budworm, Choristoneura fumiferana . Insect Biochem Mol Biol 32:1813–1823 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.045583-0
Loading
/content/journal/jgv/10.1099/vir.0.045583-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error