1887

Abstract

The stability and conservation of the sequences of RNA viruses in the field and the high error rates measured are paradoxical. The field stability indicates that there are very strong selective constraints on sequence diversity. The nature of these constraints is discussed. Apart from constraints on variation in -acting RNA and the amino acid sequences of viral proteins, there are other ones relating to the presence of specific dinucleotides such CpG and UpA as well as the importance of RNA secondary structures and RNA degradation rates. Recent other constraints identified in other RNA viruses, such as effects of secondary RNA structure on protein folding or modification of cellular tRNA complements, are also discussed. Using the family , I show that the codon usage pattern (CUP) is (i) specific for each virus species and (ii) that it is markedly different from the host – it does not vary even in vaccine viruses that have been derived by passage in a number of inappropriate host cells. The CUP might thus be an additional constraint on variation, and I propose the concept of codon constellation to indicate the informational content of the sequences of RNA molecules relating not only to stability and structure but also to the efficiency of translation of a viral mRNA resulting from the CUP and the numbers and position of rare codons.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.070789-0
2015-05-01
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/5/939.html?itemId=/content/journal/jgv/10.1099/vir.0.070789-0&mimeType=html&fmt=ahah

References

  1. Atkinson N. J., Witteveldt J., Evans D. J., Simmonds P. 2014; The influence of CpG and UpA dinucleotide frequencies on RNA virus replication and characterization of the innate cellular pathways underlying virus attenuation and enhanced replication. Nucleic Acids Res 42:4527–4545 [View Article][PubMed]
    [Google Scholar]
  2. Ball L. A., Pringle C. R., Flanagan B., Perepelitsa V. P., Wertz G. W. 1999; Phenotypic consequences of rearranging the P, M, and G genes of vesicular stomatitis virus. J Virol 73:4705–4712[PubMed]
    [Google Scholar]
  3. Barrett T. 1999; Morbillivirus infections, with special emphasis on morbilliviruses of carnivores. Vet Microbiol 69:3–13 [View Article][PubMed]
    [Google Scholar]
  4. Barrett T., Subbarao S. M., Belsham G. J., Mahy B. W. 1991; The molecular biology of the Morbilliviruses. In The Paramyxoviruses pp. 83–102 Edited by Kingsbury D. W. New York: Plenum Press; [View Article]
    [Google Scholar]
  5. Bird A. P. 1980; DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8:1499–1504 [View Article][PubMed]
    [Google Scholar]
  6. Brennan-Laun S. E., Ezelle H. J., Li X.-L., Hassel B. A. 2014; RNase-L control of cellular mRNAs: roles in biologic functions and mechanisms of substrate targeting. J Interferon Cytokine Res 34:275–288 [View Article][PubMed]
    [Google Scholar]
  7. Calain P., Roux L. 1993; The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol 67:4822–4830[PubMed]
    [Google Scholar]
  8. Cannarozzi G., Schraudolph N. N., Faty M., von Rohr P., Friberg M. T., Roth A. C., Gonnet P., Gonnet G., Barral Y. 2010; A role for codon order in translation dynamics. Cell 141:355–367 [View Article][PubMed]
    [Google Scholar]
  9. Chandler L. A., Jones P. A. 1988; Hypomethylation of DNA in the regulation of gene expression. Dev Biol (N Y 1985) 5:335–349[PubMed]
    [Google Scholar]
  10. Davis M., Sagan S. M., Pezacki J. P., Evans D. J., Simmonds P. 2008; Bioinformatic and physical characterizations of genome-scale ordered RNA structure in mammalian RNA viruses. J Virol 82:11824–11836 [View Article][PubMed]
    [Google Scholar]
  11. Desfosses A., Goret G., Farias Estrozi L., Ruigrok R. W., Gutsche I. 2011; Nucleoprotein-RNA orientation in the measles virus nucleocapsid by three-dimensional electron microscopy. J Virol 85:1391–1395 [View Article][PubMed]
    [Google Scholar]
  12. Dittmar K. A., Goodenbour J. M., Pan T. 2006; Tissue-specific differences in human transfer RNA expression. PLoS Genet 2:e221 [View Article][PubMed]
    [Google Scholar]
  13. Domingo E., Holland J. J. 1994; Mutation rates and rapid evolution of RNA viruses. In The Evolutionary Biology of Viruses pp. 161–184 Edited by Morse S. S. New York: Raven Press Ltd;
    [Google Scholar]
  14. Domingo E., Wain-Hobson S. 2009; The 30th anniversary of quasispecies. Meeting on ‘Quasispecies: past, present and future’. EMBO Rep 10:444–448 [View Article][PubMed]
    [Google Scholar]
  15. Drexler J. F., Corman V. M., Müller M. A., Maganga G. D., Vallo P., Binger T., Gloza-Rausch F., Cottontail V. M., Rasche A. et al. 2012; Bats host major mammalian paramyxoviruses. Nat Commun 3:796 [View Article][PubMed]
    [Google Scholar]
  16. Duan J., Antezana M. A. 2003; Mammalian mutation pressure, synonymous codon choice, and mRNA degradation. J Mol Evol 57:694–701 [View Article][PubMed]
    [Google Scholar]
  17. Forsbach A., Nemorin J. G., Montino C., Müller C., Samulowitz U., Vicari A. P., Jurk M., Mutwiri G. K., Krieg A. M. et al. 2008; Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J Immunol 180:3729–3738 [View Article][PubMed]
    [Google Scholar]
  18. Goodman D. B., Church G. M., Kosuri S. 2013; Causes and effects of N-terminal codon bias in bacterial genes. Science 342:475–479 [View Article][PubMed]
    [Google Scholar]
  19. Hausmann S., Jacques J. P., Kolakofsky D. 1996; Paramyxovirus RNA editing and the requirement for hexamer genome length. RNA 2:1033–1045[PubMed]
    [Google Scholar]
  20. Hicks A. L., Duffy S. 2014; Cell tropism predicts long-term nucleotide substitution rates of mammalian RNA viruses. PLoS Pathog 10:e1003838 [View Article][PubMed]
    [Google Scholar]
  21. Iseni F., Baudin F., Garcin D., Marq J. B., Ruigrok R. W., Kolakofsky D. 2002; Chemical modification of nucleotide bases and mRNA editing depend on hexamer or nucleoprotein phase in Sendai virus nucleocapsids. RNA 8:1056–1067 [View Article][PubMed]
    [Google Scholar]
  22. Jenkins G. M., Holmes E. C. 2003; The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res 92:1–7 [View Article][PubMed]
    [Google Scholar]
  23. Jensen S., Thomsen A. R. 2012; Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol 86:2900–2910 [View Article][PubMed]
    [Google Scholar]
  24. Karlin S., Doerfler W., Cardon L. R. 1994; Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses?. J Virol 68:2889–2897[PubMed]
    [Google Scholar]
  25. Kolakofsky D., Pelet T., Garcin D., Hausmann S., Curran J., Roux L. 1998; Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J Virol 72:891–899[PubMed]
    [Google Scholar]
  26. Krieg A. M. 1996; Lymphocyte activation by CpG dinucleotide motifs in prokaryotic DNA. Trends Microbiol 4:73–77 [View Article][PubMed]
    [Google Scholar]
  27. Krieg A. M. 2000; Immune effects and mechanisms of action of CpG motifs. Vaccine 19:618–622 [View Article][PubMed]
    [Google Scholar]
  28. Lamb R. A., Parks G. D. 2013; Paramyxoviridae. In Fields Virology, 6th edn. pp. 957–995 Edited by Knipe D. M., Howley P. M. Lippincott Williams;
    [Google Scholar]
  29. Langlois R. A., Albrecht R. A., Kimble B., Sutton T., Shapiro J. S., Finch C., Angel M., Chua M. A., Gonzalez-Reiche A. S. et al. 2013; MicroRNA-based strategy to mitigate the risk of gain-of-function influenza studies. Nat Biotechnol 31:844–847 [View Article][PubMed]
    [Google Scholar]
  30. Lewis B. P., Shih I. H., Jones-Rhoades M. W., Bartel D. P., Burge C. B. 2003; Prediction of mammalian microRNA targets. Cell 115:787–798 [View Article][PubMed]
    [Google Scholar]
  31. Li M., Kao E., Gao X., Sandig H., Limmer K., Pavon-Eternod M., Jones T. E., Landry S., Pan T. et al. 2012; Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature 491:125–128 [View Article][PubMed]
    [Google Scholar]
  32. Li Y., Lu J., Han Y., Fan X., Ding S.-W. 2013; RNA interference functions as an antiviral immunity mechanism in mammals. Science 342:231–234 [View Article][PubMed]
    [Google Scholar]
  33. Maillard P. V., Ciaudo C., Marchais A., Li Y., Jay F., Ding S. W., Voinnet O. 2013; Antiviral RNA interference in mammalian cells. Science 342:235–238 [View Article][PubMed]
    [Google Scholar]
  34. Malathi K., Saito T., Crochet N., Barton D. J., Gale M. Jr, Silverman R. H. 2010; RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP. RNA 16:2108–2119 [View Article][PubMed]
    [Google Scholar]
  35. McFadden N., Arias A., Dry I., Bailey D., Witteveldt J., Evans D. J., Goodfellow I., Simmonds P. 2013; Influence of genome-scale RNA structure disruption on the replication of murine norovirus–similar replication kinetics in cell culture but attenuation of viral fitness in vivo. Nucleic Acids Res 41:6316–6331 [View Article][PubMed]
    [Google Scholar]
  36. Moura G., Pinheiro M., Arrais J., Gomes A. C., Carreto L., Freitas A., Oliveira J. L., Santos M. A. 2007; Large scale comparative codon-pair context analysis unveils general rules that fine-tune evolution of mRNA primary structure. PLoS ONE 2:e847 [View Article][PubMed]
    [Google Scholar]
  37. Ogle J. M., Ramakrishnan V. 2005; Structural insights into translational fidelity. Annu Rev Biochem 74:129–177 [View Article][PubMed]
    [Google Scholar]
  38. Pomeroy, L. W., Bjørnstad, O. N. & Holmes, E. C. (2008). The evolutionary and epidemiological dynamics of the Paramyxoviridae. J Mol Evol 66 , 98–106
  39. Randall R. E., Goodbourn S. 2008; Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89:1–47 [View Article][PubMed]
    [Google Scholar]
  40. Rima B. K., McFerran N. V. 1997; Dinucleotide and stop codon frequencies in single-stranded RNA viruses. J Gen Virol 78:2859–2870[PubMed] [CrossRef]
    [Google Scholar]
  41. Rima, B. K., Earle, J. A. P., Baczko, K., ter Meulen, V., Liebert, U. G., Carstens, C., Carabaña, J., Caballero, M., Celma, M. L. & Fernandez-Munõz, R. (1997). Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. J Gen Virol 78 , 97–106
  42. Rima B. K., Collin A. M. J., Earle J. A. P. 2005; Completion of the sequence of a cetacean morbillivirus and comparative analysis of the complete genome sequences of four morbilliviruses. Virus Genes 30:113–119 [View Article][PubMed]
    [Google Scholar]
  43. Rothberg P. G., Wimmer E. 1981; Mononucleotide and dinucleotide frequencies, and codon usage in poliovirion RNA. Nucleic Acids Res 9:6221–6230 [View Article][PubMed]
    [Google Scholar]
  44. Sharp P. M., Li W. H. 1986; An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol 24:28–38 [View Article][PubMed]
    [Google Scholar]
  45. Simmonds P., Tuplin A., Evans D. J. 2004; Detection of genome-scale ordered RNA structure (GORS) in genomes of positive-stranded RNA viruses: Implications for virus evolution and host persistence. RNA 10:1337–1351 [View Article][PubMed]
    [Google Scholar]
  46. Simmonds P., Xia W., Baillie J. K., McKinnon K. 2013; Modelling mutational and selection pressures on dinucleotides in eukaryotic phyla–selection against CpG and UpA in cytoplasmically expressed RNA and in RNA viruses. BMC Genomics 14:610 [View Article][PubMed]
    [Google Scholar]
  47. Sugiyama T., Gursel M., Takeshita F., Coban C., Conover J., Kaisho T., Akira S., Klinman D. M., Ishii K. J. 2005; CpG RNA: identification of novel single-stranded RNA that stimulates human CD14+CD11c+ monocytes. J Immunol 174:2273–2279 [View Article][PubMed]
    [Google Scholar]
  48. Takeda M., Nakatsu Y., Ohno S., Seki F., Tahara M., Hashiguchi T., Yanagi Y. 2006; Generation of measles virus with a segmented RNA genome. J Virol 80:4242–4248 [View Article][PubMed]
    [Google Scholar]
  49. Thorne H. V., Dermott E. 1977; Y-forms as possible intermediates in the replication of measles virus nucleocapsids. Nature 268:345–347 [View Article][PubMed]
    [Google Scholar]
  50. Tuller T., Carmi A., Vestsigian K., Navon S., Dorfan Y., Zaborske J., Pan T., Dahan O., Furman I., Pilpel Y. 2010; An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141:344–354 [View Article][PubMed]
    [Google Scholar]
  51. Vignuzzi M., Andino R. 2012; Closing the gap: the challenges in converging theoretical, computational, experimental and real-life studies in virus evolution. Curr Opin Virol 2:515–518 [View Article][PubMed]
    [Google Scholar]
  52. Watts J. M., Dang K. K., Gorelick R. J., Leonard C. W., Bess J. W. Jr, Swanstrom R., Burch C. L., Weeks K. M. 2009; Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460:711–716 [View Article][PubMed]
    [Google Scholar]
  53. Werling D., Jungi T. W. 2003; TOLL-like receptors linking innate and adaptive immune response. Vet Immunol Immunopathol 91:1–12 [View Article][PubMed]
    [Google Scholar]
  54. Wimmer E., Paul A. V. 2011; Synthetic poliovirus and other designer viruses: what have we learned from them?. Annu Rev Microbiol 65:583–609 [View Article][PubMed]
    [Google Scholar]
  55. Witteveldt J., Blundell R., Maarleveld J. J., McFadden N., Evans D. J., Simmonds P. 2014; The influence of viral RNA secondary structure on interactions with innate host cell defences. Nucleic Acids Res 42:3314–3329 [View Article][PubMed]
    [Google Scholar]
  56. Woo P. C. Y., Lau S. K. P., Wong B. H. L., Fan R. Y. Y., Wong A. Y. P., Zhang A. J. X., Wu Y., Choi G. K. Y., Li K. S. M. et al. 2012; Feline morbillivirus, a previously undescribed paramyxovirus associated with tubulointerstitial nephritis in domestic cats. Proc Natl Acad Sci U S A 109:5435–5440 [View Article][PubMed]
    [Google Scholar]
  57. Yang C., Skiena S., Futcher B., Mueller S., Wimmer E. 2013; Deliberate reduction of hemagglutinin and neuraminidase expression of influenza virus leads to an ultraprotective live vaccine in mice. Proc Natl Acad Sci U S A 110:9481–9486 [View Article][PubMed]
    [Google Scholar]
  58. Zhang Z., Dai W., Wang Y., Lu C., Fan H. 2013; Analysis of synonymous codon usage patterns in torque teno sus virus 1 (TTSuV1). Arch Virol 158:145–154 [View Article][PubMed]
    [Google Scholar]
  59. Zhou T., Gu W., Ma J., Sun X., Lu Z. 2005; Analysis of synonymous codon usage in H5N1 virus and other influenza A viruses. Biosystems 81:77–86 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.070789-0
Loading
/content/journal/jgv/10.1099/vir.0.070789-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error