1887

Abstract

During type 1 human immunodeficiency virus infection, not only can dendritic cells (DCs) prime T cells against the virus, but they can also infect them . Feline AIDS is caused by feline immunodeficiency virus (FIV) and is considered a model for the human illness because the two diseases have many features in common. Little is known about the interaction of feline DCs with FIV; therefore, this study attempts to tackle such an issue. Infection of feline monocyte-derived DCs (MDDCs) was attempted by spinoculation with FIV strains Petaluma (FIV-Pet) and M2. FIV-Pet was released rapidly in the supernatants of both infected MDDCs and activated T cells after spinoculation. It is shown that FIV-Pet was produced by MDDCs by monitoring viral content in the supernatants of infected MDDCs, by intracellular staining for p25 and by showing its cytopathic effect. Although activated T cells were better substrates for FIV replication, leading to prolonged viral shedding, both immature MDDCs and MDDCs matured with lipopolysaccharide supported virus production, mostly during the first 2 days after infection. At later times, FIV induced syncytium formation by MDDCs. Concerning the FIV receptors, MDDCs were shown to be CD134-negative and CXCR4-positive, a phenotype compatible with permissiveness to FIV-Pet. These results also suggest that maturation is not hampered by FIV infection and that virus exposure itself does not induce MDDC maturation. It is also shown that infected MDDCs can infect activated PBMCs efficiently . It is concluded that MDDCs can be infected by FIV, although infection does not appear to influence their functionality.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82926-0
2007-09-01
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/9/2574.html?itemId=/content/journal/jgv/10.1099/vir.0.82926-0&mimeType=html&fmt=ahah

References

  1. Arrighi J. F., Pion M., Garcia E., Escola J. M., van Kooyk Y., Geijtenbeek T. B., Piguet V. 2004; DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells. J Exp Med 200:1279–1288 [CrossRef]
    [Google Scholar]
  2. Bienzle D., Reggeti F., Clark M. E., Chow C. 2003; Functional feline dendritic cells derived from blood and bone marrow. Vet Immunol Immunopathol 96:19–30 [CrossRef]
    [Google Scholar]
  3. Cavrois M., Neidleman J., Kreisberg J. F., Fenard D., Callebaut C., Greene W. C. 2006; Human immunodeficiency virus fusion to dendritic cells declines as cells mature. J Virol 80:1992–1999 [CrossRef]
    [Google Scholar]
  4. de Parseval A., Su S. V., Elder J. H., Lee B. 2004a; Specific interaction of feline immunodeficiency virus surface glycoprotein with human DC-SIGN. J Virol 78:2597–2600 [CrossRef]
    [Google Scholar]
  5. de Parseval A., Ngo S., Sun P., Elder J. H. 2004b; Factors that increase the effective concentration of CXCR4 dictate feline immunodeficiency virus tropism and kinetics of replication. J Virol 78:9132–9143 [CrossRef]
    [Google Scholar]
  6. Fantuzzi L., Purificato C., Donato K., Belardelli F., Gessani S. 2004; Human immunodeficiency virus type 1 gp120 induces abnormal maturation and functional alterations of dendritic cells: a novel mechanism for AIDS pathogenesis. J Virol 78:9763–9772 [CrossRef]
    [Google Scholar]
  7. Figdor C. G., de Vries I. J., Lesterhuis W. J., Melief C. J. 2004; Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480 [CrossRef]
    [Google Scholar]
  8. Freer G., Florio W., Dalla Casa B., Bottai D., Batoni G., Maisetta G., Senesi S., Campa M. 1998; Identification and molecular cloning of a novel secretion antigen from Mycobacterium tuberculosis and Mycobacterium bovis BCG. Res Microbiol 149:265–275 [CrossRef]
    [Google Scholar]
  9. Freer G., Matteucci D., Mazzetti P., Bozzacco L., Bendinelli M. 2005; Generation of feline dendritic cells derived from peripheral blood monocytes for in vivo use. Clin Diagn Lab Immunol 12:1202–1208
    [Google Scholar]
  10. Geijtenbeek T. B., Kwon D. S., Torensma R., van Vliet S. J., van Duijnhoven G. C., Middel J., Cornelissen I. L., Nottet H. S., KewalRamani V. N. other authors 2000; DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:587–597 [CrossRef]
    [Google Scholar]
  11. Granelli-Piperno A., Golebiowska A., Trumpfheller C., Siegal F. P., Steinman R. M. 2004; HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc Natl Acad Sci U S A 101:7669–7674 [CrossRef]
    [Google Scholar]
  12. Granelli-Piperno A., Shimeliovich I., Pack M., Trumpfheller C., Steinman R. M. 2006; HIV-1 selectively infects a subset of nonmaturing BDCA1-positive dendritic cells in human blood. J Immunol 176:991–998 [CrossRef]
    [Google Scholar]
  13. Matteucci D., Mazzetti P., Baldinotti F., Zaccaro L., Bendinelli M. 1995; The feline lymphoid cell line MBM and its use for feline immunodeficiency virus isolation and quantitation. Vet Immunol Immunopathol 46:71–82 [CrossRef]
    [Google Scholar]
  14. Matteucci D., Pistello M., Mazzetti P., Giannecchini S., Del Mauro D., Zaccaro L., Bandecchi P., Tozzini F., Bendinelli M. 1996; Vaccination protects against in vivo-grown feline immunodeficiency virus even in the absence of detectable neutralizing antibodies. J Virol 70:617–622
    [Google Scholar]
  15. McDonald D., Wu L., Bohks S. M., KewalRamani V. N., Unutmaz D., Hope T. J. 2003; Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300:1295–1297 [CrossRef]
    [Google Scholar]
  16. O'Doherty U., Swiggard W. J., Malim M. H. 2000; Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol 74:10074–10080 [CrossRef]
    [Google Scholar]
  17. Patterson S., Donaghy H., Amjad P., Gazzard D., Gotch F., Kelleher P. 2005; Human BDCA-1-positive blood dendritic cells differentiate into phenotypically distinct immature and mature populations in the absence of exogenous maturational stimuli: differentiation failure in HIV infection. J Immunol 174:8200–8209 [CrossRef]
    [Google Scholar]
  18. Pedersen N. C., Ho E. W., Brown M. L., Yamamoto J. K. 1987; Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 235:790–793 [CrossRef]
    [Google Scholar]
  19. Pope M. 1998; SIV replication and the dendritic cell. AIDS Res Hum Retroviruses 14:S71–S73
    [Google Scholar]
  20. Reed L. J., Muench H. 1938; A simple method of estimating fifty per cent endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  21. Sallusto F., Lanzavecchia A. 2002; The instructive role of dendritic cells on T-cell responses. Arthritis Res 4:S127–S132 [CrossRef]
    [Google Scholar]
  22. Shimojima M., Miyazawa T., Ikeda Y., McMonagle E. L., Haining H., Akashi H., Takeuchi Y., Hosie M. J., Willett B. J. 2004; Use of CD134 as a primary receptor by the feline immunodeficiency virus. Science 303:1192–1195 [CrossRef]
    [Google Scholar]
  23. Söderlund J., Nilsson C., Loré K., Castanos-Velez E., Ekman M., Heiden T., Biberfeld G., Andersson J., Biberfeld P. 2004; Dichotomy between CD1a+ and CD83+ dendritic cells in lymph nodes during SIV infection of macaques. J Med Primatol 33:16–24 [CrossRef]
    [Google Scholar]
  24. Sparger E. 2006; FIV as a model for HIV: an overview. In Infectious Agents and Pathogenesis: In Vivo Models of HIV Disease and Control . pp 149–199 Edited by Friedman H., Specter S., Bendinelli M. New York: Springer;
  25. Sprague W. S., Pope M., Hoover E. A. 2005; Culture and comparison of feline myeloid dendritic cells vs macrophages. J Comp Pathol 133:136–145 [CrossRef]
    [Google Scholar]
  26. Steinman R. M., Granelli-Piperno A., Pope M., Trumpfheller C., Ignatius R., Arrode G., Racz P., Tenner-Racz K. 2003; The interaction of immunodeficiency viruses with dendritic cells. Curr Top Microbiol Immunol 276:1–30
    [Google Scholar]
  27. Tompkins M. B., Bull M. E., Dow J. L., Ball J. M., Collisson E. W., Winslow B. J., Phadke A. P., Vahlenkamp T. W., Tompkins W. A. 2002; Feline immunodeficiency virus infection is characterized by B7+CTLA4+ T cell apoptosis. J Infect Dis 185:1077–1093 [CrossRef]
    [Google Scholar]
  28. Tozzini F., Matteucci D., Bandecchi P., Baldinotti F., Poli A., Pistello M., Siebelink K. H. J., Ceccherini Nelli L., Bendinelli M. 1992; Simple in vitro methods for titrating feline immunodeficiency virus (FIV) and FIV-neutralizing antibodies. J Virol Methods 37:241–252
    [Google Scholar]
  29. Van der Meer F. J. U. M., Schuurman N. M. P., Egberink H. F. 2007; Feline immunodeficiency virus infection is enhanced by feline bone marrow-derived dendritic cells. J Gen Virol 88:251–258 [CrossRef]
    [Google Scholar]
  30. Willett B. J., McMonagle E. L., Ridha S., Hosie M. J. 2006; Differential utilization of CD134 as a functional receptor by diverse strains of feline immunodeficiency virus. J Virol 80:3386–3394 [CrossRef]
    [Google Scholar]
  31. Yamamoto J. K., Ackley C. D., Zochlinski H., Louie H., Pembroke E., Torten M., Hansen H., Munn R., Okuda T. 1991; Development of IL-2-independent feline lymphoid cell lines chronically infected with feline immunodeficiency virus: importance for diagnostic reagents and vaccines. Intervirology 32:361–375
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82926-0
Loading
/content/journal/jgv/10.1099/vir.0.82926-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error